
The compressibility factor for \[{{\text{H}}_{\text{2}}}\] and \[{\text{He}}\] is usually
(A) \[ < {\text{ }}1\]
(B) \[{\text{ > 1}}\]
(C) \[{\text{ = 1}}\]
(D) Either of these
Answer
219k+ views
Hint: Compressibility factor is defined as the ratio of actual molar volume of gas to the calculated molar volume at the same pressure and temperature. It is denoted as Z.
Formula used: Compressibility factor is calculated as –
\[Z{\text{ }} = {\text{ }}\dfrac{{{V_{real}}}}{{{V_{ideal}}}}\]
where,
\[{{\text{V}}_{{\text{real}}}}\]= volume of real gas
\[{{\text{V}}_{{\text{ideal}}}}\]= volume of ideal gas
Complete step by step answer:
Real gases are referred to as non-ideal gases that occupy space and perform interactions. These gases do not obey the ideal gas equation, i.e., \[{\text{PV = nRT}}\]
Compressibility factor is defined as the ratio of actual molar volume of gas to the calculated molar volume at the same pressure and temperature. It is denoted as Z.
Compressibility factor is calculated as –
\[Z{\text{ }} = {\text{ }}\dfrac{{{V_{real}}}}{{{V_{ideal}}}}\]
where,
\[{{\text{V}}_{{\text{real}}}}\]= volume of real gas
\[{{\text{V}}_{{\text{ideal}}}}\]= volume of ideal gas
For an ideal gas, the compressibility factor, \[{\text{Z = 1}}\]
But as there are deviations from ideal gas behaviour or real gas behaviour. The compressibility factor or Z increases with pressure and decreases with temperature. When the pressure increases the compressibility factor is greater than one as \[{V_{real}}\] is greater than \[{V_{ideal}}\]
\[{{\text{H}}_{\text{2}}}\] and \[{\text{He}}\] are real gases and show real gas behaviour. They show more volume than usual.
Therefore, the compressibility factor of \[{H_2}\] and \[{\text{He}}\] is greater than one.
Hence, the correct answer is (B) i.e., \[{\text{ > 1}}\]
Note: A student can get confused between ideal gas and real gas. Ideal gas obeys all the gas laws under all conditions of temperature and pressure. On the other hand, a real gas is something that we observe around us. It does not obey the ideal gas laws all the time. But at a specific temperature known as Boyle’s Temperature, even a real gas behaves like an ideal gas.
Formula used: Compressibility factor is calculated as –
\[Z{\text{ }} = {\text{ }}\dfrac{{{V_{real}}}}{{{V_{ideal}}}}\]
where,
\[{{\text{V}}_{{\text{real}}}}\]= volume of real gas
\[{{\text{V}}_{{\text{ideal}}}}\]= volume of ideal gas
Complete step by step answer:
Real gases are referred to as non-ideal gases that occupy space and perform interactions. These gases do not obey the ideal gas equation, i.e., \[{\text{PV = nRT}}\]
Compressibility factor is defined as the ratio of actual molar volume of gas to the calculated molar volume at the same pressure and temperature. It is denoted as Z.
Compressibility factor is calculated as –
\[Z{\text{ }} = {\text{ }}\dfrac{{{V_{real}}}}{{{V_{ideal}}}}\]
where,
\[{{\text{V}}_{{\text{real}}}}\]= volume of real gas
\[{{\text{V}}_{{\text{ideal}}}}\]= volume of ideal gas
For an ideal gas, the compressibility factor, \[{\text{Z = 1}}\]
But as there are deviations from ideal gas behaviour or real gas behaviour. The compressibility factor or Z increases with pressure and decreases with temperature. When the pressure increases the compressibility factor is greater than one as \[{V_{real}}\] is greater than \[{V_{ideal}}\]
\[{{\text{H}}_{\text{2}}}\] and \[{\text{He}}\] are real gases and show real gas behaviour. They show more volume than usual.
Therefore, the compressibility factor of \[{H_2}\] and \[{\text{He}}\] is greater than one.
Hence, the correct answer is (B) i.e., \[{\text{ > 1}}\]
Note: A student can get confused between ideal gas and real gas. Ideal gas obeys all the gas laws under all conditions of temperature and pressure. On the other hand, a real gas is something that we observe around us. It does not obey the ideal gas laws all the time. But at a specific temperature known as Boyle’s Temperature, even a real gas behaves like an ideal gas.
Recently Updated Pages
The hybridization and shape of NH2 ion are a sp2 and class 11 chemistry JEE_Main

What is the pH of 001 M solution of HCl a 1 b 10 c class 11 chemistry JEE_Main

Aromatization of nhexane gives A Benzene B Toluene class 11 chemistry JEE_Main

Show how you will synthesise i 1Phenylethanol from class 11 chemistry JEE_Main

The enolic form of acetone contains a 10sigma bonds class 11 chemistry JEE_Main

Which of the following Compounds does not exhibit tautomerism class 11 chemistry JEE_Main

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

Understanding Collisions: Types and Examples for Students

Understanding Atomic Structure for Beginners

Other Pages
NCERT Solutions For Class 11 Chemistry Chapter 7 Redox Reaction

JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Thermodynamics Class 11 Chemistry Chapter 5 CBSE Notes - 2025-26

NCERT Solutions ForClass 11 Chemistry Chapter Chapter 5 Thermodynamics

Equilibrium Class 11 Chemistry Chapter 6 CBSE Notes - 2025-26

How to Convert a Galvanometer into an Ammeter or Voltmeter

