
The compound 1, 2-butadiene has:
A. Only sp hybridised carbon atoms
B. Only \[s{p^2}\] hybridised carbon atoms
C. Both sp and \[s{p^2}\] hybridised carbon atoms
D. \[sp\], \[s{p^2}\] and \[s{p^3}\] hybridised carbon atoms
Answer
152.1k+ views
Hint: We know that the phenomenon of mixing of orbitals of the same atom with slight difference in energies so as to redistribute the energies and give new orbitals of equivalent energy and shape is termed as hybridization.
Complete step-by-step solution:
Here we first find the hybridisation of each carbon individually either it is \[s{p^2}\], \[s{p^3}\] or \[sp\].
\[s{p^3}\] hybridization uses four \[s{p^3}\] hybridized atomic orbitals. So, there must be the presence of four groups of electrons.
\[s{p^2}\] hybridization uses three \[s{p^2}\] hybridized atomic orbitals. So, there must be the presence of three groups of electrons.
\[sp\] hybridization uses two \[sp\] hybridized atomic orbitals. So, there must be the presence of three groups of electrons.
Let’s come to the question. The structure of 1, 2-butadiene is as follows:

,the 1st carbon is \[s{p^2}\] hybridized as three electrons groups present, 2nd carbon is \[sp\] hybridised (two electron groups) , 3rd carbon is \[s{p^2}\] hybridized (three electrons groups) and 4th carbon is \[s{p^3}\] hybridized because of presence of four electron groups.
Therefore, in 1, 2-butadiene, \[s{p^2}\], \[sp\] and \[s{p^3}\] carbons are present. Hence, D is the correct option.
Note: Hybridisation of carbon atom can be found by counting the number of electron groups surrounding the carbon atom. If four groups present such as in case of \[{\rm{C}}{{\rm{H}}_{\rm{4}}}\] the hybridization is \[s{p^3}\]. If three electron groups are present, hybridization is \[s{p^2}\] and if two electron groups present, hybridization is \[sp\].
Complete step-by-step solution:
Here we first find the hybridisation of each carbon individually either it is \[s{p^2}\], \[s{p^3}\] or \[sp\].
\[s{p^3}\] hybridization uses four \[s{p^3}\] hybridized atomic orbitals. So, there must be the presence of four groups of electrons.
\[s{p^2}\] hybridization uses three \[s{p^2}\] hybridized atomic orbitals. So, there must be the presence of three groups of electrons.
\[sp\] hybridization uses two \[sp\] hybridized atomic orbitals. So, there must be the presence of three groups of electrons.
Let’s come to the question. The structure of 1, 2-butadiene is as follows:

,the 1st carbon is \[s{p^2}\] hybridized as three electrons groups present, 2nd carbon is \[sp\] hybridised (two electron groups) , 3rd carbon is \[s{p^2}\] hybridized (three electrons groups) and 4th carbon is \[s{p^3}\] hybridized because of presence of four electron groups.
Therefore, in 1, 2-butadiene, \[s{p^2}\], \[sp\] and \[s{p^3}\] carbons are present. Hence, D is the correct option.
Note: Hybridisation of carbon atom can be found by counting the number of electron groups surrounding the carbon atom. If four groups present such as in case of \[{\rm{C}}{{\rm{H}}_{\rm{4}}}\] the hybridization is \[s{p^3}\]. If three electron groups are present, hybridization is \[s{p^2}\] and if two electron groups present, hybridization is \[sp\].
Recently Updated Pages
JEE Main 2022 (June 29th Shift 2) Maths Question Paper with Answer Key

JEE Main 2023 (January 25th Shift 1) Maths Question Paper with Answer Key

JEE Main 2022 (July 29th Shift 1) Maths Question Paper with Answer Key

JEE Main 2022 (July 26th Shift 2) Chemistry Question Paper with Answer Key

JEE Main 2022 (June 26th Shift 2) Maths Question Paper with Answer Key

JEE Main 2022 (June 29th Shift 1) Physics Question Paper with Answer Key

Trending doubts
Collision - Important Concepts and Tips for JEE

Brief Information on Alpha, Beta and Gamma Decay - JEE Important Topic

Compressibility Factor Z | Plot of Compressibility Factor Z Vs Pressure for JEE

The reaction of P4 with X leads selectively to P4O6 class 11 chemistry JEE_Main

Free Radical Substitution Mechanism of Alkanes for JEE Main 2025

An amount of 2 moles KClO3 is decomposed completely class 11 chemistry JEE_Main

Other Pages
JEE Advanced 2025: Dates, Registration, Syllabus, Eligibility Criteria and More

Thermodynamics Class 11 Notes: CBSE Chapter 5

NCERT Solutions for Class 11 Chemistry Chapter 7 Redox Reaction

Hydrocarbons Class 11 Notes: CBSE Chemistry Chapter 9

NCERT Solutions for Class 11 Chemistry In Hindi Chapter 8 Redox Reactions

JEE Main Chemistry Question Paper with Answer Keys and Solutions
