
The compass needle of an airplane shows that it is heading towards the north and the speedometer measures the velocity of $240 kmh^{-1}$. Wind is blowing at $100 kmh^{-1}$ due east. Find the velocity of the airplane with respect to earth.
A) $260 kmh^{-1}, {23^0}$ east of north
B) $260 kmh^{-1}, {32^0}$ west of north
C) $260 kmh^{-1}, {23^0}$ west of north
D) None of these
Answer
147.3k+ views
Hint: The above problem is based on the vector subtraction and relative velocity concept. Airplane is heading towards north and wind is blowing towards east which means that velocity of airplane with respect to ground can be calculated by subtracting magnitude of velocity shown by speedometer and velocity of wind. Let’s get started with the vector subtraction to find out the speed of the plane with respect to round.
Complete step by step solution:
First let’s discuss vectors and relative velocity concepts in detail.
Vectors quantities are those which are characterised by both magnitude and direction. Vectors are represented by a line with an arrow head (which represents the direction of the vector).
Vector subtraction: The process of subtraction of one algebraic quantity from another is equivalent to adding the negative of the quantity to be subtracted.
The relative velocity is the velocity of an object or observer B in the rest frame of another object or observer A. Now, we calculate the velocity of the plane with respect to ground.

We will do vector subtraction by using the concept of Pythagoras theorem.
Velocity of an airplane will be denoted by $V_{ag}$ velocity of wind is $V_W$ and velocity of airplane $V_a$.
$
\Rightarrow {V^2}_{ag} = {V_a}^2 + {V_w}^2 \\
\Rightarrow {V_{ag}} = \sqrt {{V_a}^2 + {V_w}^2} \\
\Rightarrow {V_{ag}} = \sqrt {{{(240)}^2} + {{(100)}^2}} \\
$ (We have used the formula and substituted the value of velocities)
$
\Rightarrow {V_{ag}} = \sqrt {67600} \\
\Rightarrow {V_{ag}} = 260Km/hr \\
$ (We have done the square and added the value)
To find the angle of movement of airplane we will use
$
\Rightarrow \tan \theta = \dfrac{{{V_w}}}{{{V_a}}} \\
\Rightarrow \tan \theta = \dfrac{{100}}{{240}} \\
$ (We have use the tangent formula)
$
\Rightarrow \theta = {\tan ^{ - 1}}\dfrac{{100}}{{240}} \\
\Rightarrow \theta = 22.67 \\
\Rightarrow \theta = {23^0} \\
$
Option (A) is correct.
Note: Vector addition and subtraction can be done using two laws which are: parallelogram law of vector addition and triangle law of vector addition. In the triangle law of vector addition, the head of one vector is attached to the tail of another vector.
Complete step by step solution:
First let’s discuss vectors and relative velocity concepts in detail.
Vectors quantities are those which are characterised by both magnitude and direction. Vectors are represented by a line with an arrow head (which represents the direction of the vector).
Vector subtraction: The process of subtraction of one algebraic quantity from another is equivalent to adding the negative of the quantity to be subtracted.
The relative velocity is the velocity of an object or observer B in the rest frame of another object or observer A. Now, we calculate the velocity of the plane with respect to ground.

We will do vector subtraction by using the concept of Pythagoras theorem.
Velocity of an airplane will be denoted by $V_{ag}$ velocity of wind is $V_W$ and velocity of airplane $V_a$.
$
\Rightarrow {V^2}_{ag} = {V_a}^2 + {V_w}^2 \\
\Rightarrow {V_{ag}} = \sqrt {{V_a}^2 + {V_w}^2} \\
\Rightarrow {V_{ag}} = \sqrt {{{(240)}^2} + {{(100)}^2}} \\
$ (We have used the formula and substituted the value of velocities)
$
\Rightarrow {V_{ag}} = \sqrt {67600} \\
\Rightarrow {V_{ag}} = 260Km/hr \\
$ (We have done the square and added the value)
To find the angle of movement of airplane we will use
$
\Rightarrow \tan \theta = \dfrac{{{V_w}}}{{{V_a}}} \\
\Rightarrow \tan \theta = \dfrac{{100}}{{240}} \\
$ (We have use the tangent formula)
$
\Rightarrow \theta = {\tan ^{ - 1}}\dfrac{{100}}{{240}} \\
\Rightarrow \theta = 22.67 \\
\Rightarrow \theta = {23^0} \\
$
Option (A) is correct.
Note: Vector addition and subtraction can be done using two laws which are: parallelogram law of vector addition and triangle law of vector addition. In the triangle law of vector addition, the head of one vector is attached to the tail of another vector.
Recently Updated Pages
How to find Oxidation Number - Important Concepts for JEE

How Electromagnetic Waves are Formed - Important Concepts for JEE

Electrical Resistance - Important Concepts and Tips for JEE

Average Atomic Mass - Important Concepts and Tips for JEE

Chemical Equation - Important Concepts and Tips for JEE

Concept of CP and CV of Gas - Important Concepts and Tips for JEE

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main Exam Marking Scheme: Detailed Breakdown of Marks and Negative Marking

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

JEE Main Participating Colleges 2024 - A Complete List of Top Colleges

Degree of Dissociation and Its Formula With Solved Example for JEE

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced 2025: Dates, Registration, Syllabus, Eligibility Criteria and More

Units and Measurements Class 11 Notes: CBSE Physics Chapter 1

NCERT Solutions for Class 11 Physics Chapter 1 Units and Measurements

Motion in a Straight Line Class 11 Notes: CBSE Physics Chapter 2

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry
