
The common tangent to the parabola ${y^2} = 4ax$ and ${x^2} = 4ay$ is
$
{\text{A}}{\text{. }}x + y + a = 0 \\
{\text{B}}{\text{. }}x + y - a = 0 \\
{\text{C}}{\text{. }}x - y + a = 0 \\
{\text{D}}{\text{. }}x - y - a = 0 \\
$
Answer
141.6k+ views
Hint: Whenever you get the questions of common tangent you have to write the equation of tangent to a given curve and then apply the condition of tangent for others. Here in case of parabola tangent means that equation has equal roots.so apply the condition and get a common tangent.
The equation of any tangent to ${y^2} = 4ax$ is $y = mx + \dfrac{a}{m}$,if it touches ${x^2} = 4ay$.
We know tangent touches at a single point so in case of parabola it is a quadratic equation and touches at single point means it has real and equal roots.
Then the equation ${x^2} = 4a\left( {mx + \dfrac{a}{m}} \right)$ has equal roots or, $m{x^2} - 4a{m^2}x - 4{a^2} = 0$ has equal roots.
We know condition of equal roots $
D = 0 \\
{\text{i}}{\text{.e }}{{\text{b}}^2} - 4ac = 0 \\ )$
$ \Rightarrow {b^2} = 16{a^2}{m^4},4ac = - 16{a^2}{m^4}$
$ \Rightarrow 16{a^2}{m^4} = - 16{a^2}{m^4} \Rightarrow m = - 1\left( {\because m \ne 0} \right)$
Putting $m = - 1$ in $y = mx + \dfrac{a}{m}$, we get $y = - x - a$
Or, $x + y + a = 0$
Hence option ${\text{A}}$ is correct.
Note: The key concept of solving questions of common tangent is first select a curve and write any general tangent to it and then apply the condition according to the second curve given in question. If the second curve is a circle then distance from center to tangent will be it’s radius but here in case of parabola equal roots will be conditioned.
The equation of any tangent to ${y^2} = 4ax$ is $y = mx + \dfrac{a}{m}$,if it touches ${x^2} = 4ay$.
We know tangent touches at a single point so in case of parabola it is a quadratic equation and touches at single point means it has real and equal roots.
Then the equation ${x^2} = 4a\left( {mx + \dfrac{a}{m}} \right)$ has equal roots or, $m{x^2} - 4a{m^2}x - 4{a^2} = 0$ has equal roots.
We know condition of equal roots $
D = 0 \\
{\text{i}}{\text{.e }}{{\text{b}}^2} - 4ac = 0 \\ )$
$ \Rightarrow {b^2} = 16{a^2}{m^4},4ac = - 16{a^2}{m^4}$
$ \Rightarrow 16{a^2}{m^4} = - 16{a^2}{m^4} \Rightarrow m = - 1\left( {\because m \ne 0} \right)$
Putting $m = - 1$ in $y = mx + \dfrac{a}{m}$, we get $y = - x - a$
Or, $x + y + a = 0$
Hence option ${\text{A}}$ is correct.
Note: The key concept of solving questions of common tangent is first select a curve and write any general tangent to it and then apply the condition according to the second curve given in question. If the second curve is a circle then distance from center to tangent will be it’s radius but here in case of parabola equal roots will be conditioned.
Recently Updated Pages
Difference Between Mutually Exclusive and Independent Events

Difference Between Area and Volume

JEE Main Participating Colleges 2024 - A Complete List of Top Colleges

JEE Main Maths Paper Pattern 2025 – Marking, Sections & Tips

Sign up for JEE Main 2025 Live Classes - Vedantu

JEE Main 2025 Helpline Numbers - Center Contact, Phone Number, Address

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main Exam Marking Scheme: Detailed Breakdown of Marks and Negative Marking

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

Learn About Angle Of Deviation In Prism: JEE Main Physics 2025

Degree of Dissociation and Its Formula With Solved Example for JEE

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced 2025: Dates, Registration, Syllabus, Eligibility Criteria and More

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

JEE Main 2025: Conversion of Galvanometer Into Ammeter And Voltmeter in Physics

Electron Gain Enthalpy and Electron Affinity for JEE

Electrical Field of Charged Spherical Shell - JEE
