
The coefficient of ${x^n}$ in the expansion of ${(1 - x)^{ - 2}}$ is.
(A). $\dfrac{{{2^n}}}{{2!}}$
(B). $n + 1$
(C). $n + 2$
(D). $2n$
Answer
218.7k+ views
Hint- In order to find the coefficient of ${x^n}$ first we have to write the binomial expansion of given terms.
The binomial expansion of ${(1 + x)^{ - n}}$ is given as
${(1 + x)^{ - n}} = 1 - nx + \dfrac{{n\left( {n + 1} \right)}}{{2!}}{x^2} - \dfrac{{n\left( {n + 1} \right)\left( {n + 2} \right)}}{{3!}}{x^3} + ...........\infty $
Complete step-by-step answer:
Given term ${(1 - x)^{ - 2}}$
We know that the binomial expansion of ${(1 - x)^{ - 2}}$ can be expressed as
\[
\because {(1 + x)^{ - n}} = 1 - nx + \dfrac{{n\left( {n + 1} \right)}}{{2!}}{x^2} - \dfrac{{n\left( {n + 1} \right)\left( {n + 2} \right)}}{{3!}}{x^3} + ...........\infty \\
\Rightarrow {(1 - x)^{ - 2}} = 1 - \left( 2 \right)\left( { - x} \right) + \dfrac{{2\left( {2 + 1} \right)}}{{2!}}{\left( { - x} \right)^2} - \dfrac{{2\left( {2 + 1} \right)\left( {2 + 2} \right)}}{{3!}}{\left( { - x} \right)^3} + ...........\infty \\
\Rightarrow {(1 - x)^{ - 2}} = 1 - 2\left( { - x} \right) + \dfrac{{2 \times 3}}{{2!}}{x^2} - \dfrac{{2 \times 3 \times 4}}{{3!}}\left( { - {x^3}} \right) + ...........\infty \\
\Rightarrow {(1 - x)^{ - 2}} = 1 + 2x + 3{x^2} + 4{x^3} + ...........\infty \\
\]
Here by observation, we have seen that ${x^0}$ has coefficient 1, coefficient of ${x^1}$ is 2, coefficient of ${x^2}$ is 3. It means the coefficient of ${x^n}$ will be $(n + 1).$
Hence, the coefficient of ${x^n}$ in the expansion of ${(1 - x)^{ - 2}}$ is $(n + 1)$ and the correct answer is option “B”.
Note- In order to solve these types of questions, we need to remember the formula of binomial expansion and with the help of this any equation of similar kind as above can be expanded and the coefficient can be similarly calculated. Few properties of binomial expansion are the binomial coefficients which are equidistant from the beginning and from the ending are equal.
The binomial expansion of ${(1 + x)^{ - n}}$ is given as
${(1 + x)^{ - n}} = 1 - nx + \dfrac{{n\left( {n + 1} \right)}}{{2!}}{x^2} - \dfrac{{n\left( {n + 1} \right)\left( {n + 2} \right)}}{{3!}}{x^3} + ...........\infty $
Complete step-by-step answer:
Given term ${(1 - x)^{ - 2}}$
We know that the binomial expansion of ${(1 - x)^{ - 2}}$ can be expressed as
\[
\because {(1 + x)^{ - n}} = 1 - nx + \dfrac{{n\left( {n + 1} \right)}}{{2!}}{x^2} - \dfrac{{n\left( {n + 1} \right)\left( {n + 2} \right)}}{{3!}}{x^3} + ...........\infty \\
\Rightarrow {(1 - x)^{ - 2}} = 1 - \left( 2 \right)\left( { - x} \right) + \dfrac{{2\left( {2 + 1} \right)}}{{2!}}{\left( { - x} \right)^2} - \dfrac{{2\left( {2 + 1} \right)\left( {2 + 2} \right)}}{{3!}}{\left( { - x} \right)^3} + ...........\infty \\
\Rightarrow {(1 - x)^{ - 2}} = 1 - 2\left( { - x} \right) + \dfrac{{2 \times 3}}{{2!}}{x^2} - \dfrac{{2 \times 3 \times 4}}{{3!}}\left( { - {x^3}} \right) + ...........\infty \\
\Rightarrow {(1 - x)^{ - 2}} = 1 + 2x + 3{x^2} + 4{x^3} + ...........\infty \\
\]
Here by observation, we have seen that ${x^0}$ has coefficient 1, coefficient of ${x^1}$ is 2, coefficient of ${x^2}$ is 3. It means the coefficient of ${x^n}$ will be $(n + 1).$
Hence, the coefficient of ${x^n}$ in the expansion of ${(1 - x)^{ - 2}}$ is $(n + 1)$ and the correct answer is option “B”.
Note- In order to solve these types of questions, we need to remember the formula of binomial expansion and with the help of this any equation of similar kind as above can be expanded and the coefficient can be similarly calculated. Few properties of binomial expansion are the binomial coefficients which are equidistant from the beginning and from the ending are equal.
Recently Updated Pages
The maximum number of equivalence relations on the-class-11-maths-JEE_Main

A train is going from London to Cambridge stops at class 11 maths JEE_Main

Find the reminder when 798 is divided by 5 class 11 maths JEE_Main

An aeroplane left 50 minutes later than its schedu-class-11-maths-JEE_Main

A man on the top of a vertical observation tower o-class-11-maths-JEE_Main

In an election there are 8 candidates out of which class 11 maths JEE_Main

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

Understanding Collisions: Types and Examples for Students

Understanding Atomic Structure for Beginners

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions for Class 11 Maths Chapter 10 Conic Sections

NCERT Solutions for Class 11 Maths Chapter 9 Straight Lines

NCERT Solutions For Class 11 Maths Chapter 8 Sequences And Series

How to Convert a Galvanometer into an Ammeter or Voltmeter

NCERT Solutions For Class 11 Maths Chapter 12 Limits And Derivatives

