
The coefficient of ${x^n}$ in the expansion of ${(1 - x)^{ - 2}}$ is.
(A). $\dfrac{{{2^n}}}{{2!}}$
(B). $n + 1$
(C). $n + 2$
(D). $2n$
Answer
134.1k+ views
Hint- In order to find the coefficient of ${x^n}$ first we have to write the binomial expansion of given terms.
The binomial expansion of ${(1 + x)^{ - n}}$ is given as
${(1 + x)^{ - n}} = 1 - nx + \dfrac{{n\left( {n + 1} \right)}}{{2!}}{x^2} - \dfrac{{n\left( {n + 1} \right)\left( {n + 2} \right)}}{{3!}}{x^3} + ...........\infty $
Complete step-by-step answer:
Given term ${(1 - x)^{ - 2}}$
We know that the binomial expansion of ${(1 - x)^{ - 2}}$ can be expressed as
\[
\because {(1 + x)^{ - n}} = 1 - nx + \dfrac{{n\left( {n + 1} \right)}}{{2!}}{x^2} - \dfrac{{n\left( {n + 1} \right)\left( {n + 2} \right)}}{{3!}}{x^3} + ...........\infty \\
\Rightarrow {(1 - x)^{ - 2}} = 1 - \left( 2 \right)\left( { - x} \right) + \dfrac{{2\left( {2 + 1} \right)}}{{2!}}{\left( { - x} \right)^2} - \dfrac{{2\left( {2 + 1} \right)\left( {2 + 2} \right)}}{{3!}}{\left( { - x} \right)^3} + ...........\infty \\
\Rightarrow {(1 - x)^{ - 2}} = 1 - 2\left( { - x} \right) + \dfrac{{2 \times 3}}{{2!}}{x^2} - \dfrac{{2 \times 3 \times 4}}{{3!}}\left( { - {x^3}} \right) + ...........\infty \\
\Rightarrow {(1 - x)^{ - 2}} = 1 + 2x + 3{x^2} + 4{x^3} + ...........\infty \\
\]
Here by observation, we have seen that ${x^0}$ has coefficient 1, coefficient of ${x^1}$ is 2, coefficient of ${x^2}$ is 3. It means the coefficient of ${x^n}$ will be $(n + 1).$
Hence, the coefficient of ${x^n}$ in the expansion of ${(1 - x)^{ - 2}}$ is $(n + 1)$ and the correct answer is option “B”.
Note- In order to solve these types of questions, we need to remember the formula of binomial expansion and with the help of this any equation of similar kind as above can be expanded and the coefficient can be similarly calculated. Few properties of binomial expansion are the binomial coefficients which are equidistant from the beginning and from the ending are equal.
The binomial expansion of ${(1 + x)^{ - n}}$ is given as
${(1 + x)^{ - n}} = 1 - nx + \dfrac{{n\left( {n + 1} \right)}}{{2!}}{x^2} - \dfrac{{n\left( {n + 1} \right)\left( {n + 2} \right)}}{{3!}}{x^3} + ...........\infty $
Complete step-by-step answer:
Given term ${(1 - x)^{ - 2}}$
We know that the binomial expansion of ${(1 - x)^{ - 2}}$ can be expressed as
\[
\because {(1 + x)^{ - n}} = 1 - nx + \dfrac{{n\left( {n + 1} \right)}}{{2!}}{x^2} - \dfrac{{n\left( {n + 1} \right)\left( {n + 2} \right)}}{{3!}}{x^3} + ...........\infty \\
\Rightarrow {(1 - x)^{ - 2}} = 1 - \left( 2 \right)\left( { - x} \right) + \dfrac{{2\left( {2 + 1} \right)}}{{2!}}{\left( { - x} \right)^2} - \dfrac{{2\left( {2 + 1} \right)\left( {2 + 2} \right)}}{{3!}}{\left( { - x} \right)^3} + ...........\infty \\
\Rightarrow {(1 - x)^{ - 2}} = 1 - 2\left( { - x} \right) + \dfrac{{2 \times 3}}{{2!}}{x^2} - \dfrac{{2 \times 3 \times 4}}{{3!}}\left( { - {x^3}} \right) + ...........\infty \\
\Rightarrow {(1 - x)^{ - 2}} = 1 + 2x + 3{x^2} + 4{x^3} + ...........\infty \\
\]
Here by observation, we have seen that ${x^0}$ has coefficient 1, coefficient of ${x^1}$ is 2, coefficient of ${x^2}$ is 3. It means the coefficient of ${x^n}$ will be $(n + 1).$
Hence, the coefficient of ${x^n}$ in the expansion of ${(1 - x)^{ - 2}}$ is $(n + 1)$ and the correct answer is option “B”.
Note- In order to solve these types of questions, we need to remember the formula of binomial expansion and with the help of this any equation of similar kind as above can be expanded and the coefficient can be similarly calculated. Few properties of binomial expansion are the binomial coefficients which are equidistant from the beginning and from the ending are equal.
Recently Updated Pages
JEE Main 2025 Session 2 Form Correction (Closed) – What Can Be Edited

What are examples of Chemical Properties class 10 chemistry JEE_Main

JEE Main 2025 Session 2 Schedule Released – Check Important Details Here!

JEE Main 2025 Session 2 Admit Card – Release Date & Direct Download Link

JEE Main 2025 Session 2 Registration (Closed) - Link, Last Date & Fees

JEE Mains Result 2025 NTA NIC – Check Your Score Now!

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main 2025: Conversion of Galvanometer Into Ammeter And Voltmeter in Physics

An aeroplane left 50 minutes later than its schedu-class-11-maths-JEE_Main

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Degree of Dissociation and Its Formula With Solved Example for JEE

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions for Class 11 Maths Chapter 8 Sequences and Series

NCERT Solutions for Class 11 Maths Chapter 10 Conic Sections

NCERT Solutions for Class 11 Maths Chapter 9 Straight Lines

NCERT Solutions for Class 11 Maths Chapter 6 Permutations and Combinations

NCERT Solutions for Class 11 Maths Chapter 13 Statistics
