
The ceiling of a long hall is 25 m high. What is the maximum horizontal distance that a ball thrown with a speed of 40 m/s can go without hitting the ceiling of the hall?
Answer
213.9k+ views
Hint:- Proceed the solution of this question, with clear understanding of what is given in question, as maximum height and initial velocity is given so we can use the formula of maximum height of projectile motion from there we can get the value of $\sin \theta {\text{ & cos}}\theta $ which is required in the formula of horizontal range.
Complete step-by-step solution -
In the question it is given that,
Initial velocity u= 40 m/s
Maximum height H =25 m
Consider $g = 10{\text{ }}\dfrac{{\text{m}}}{{{{\sec }^2}}}$
we know that he maximum height in projectile motion equal to $\dfrac{{{{\text{u}}^2}{\text{si}}{{\text{n}}^2}\theta }}{{2g}}$
so equalising it with given maximum height in question i.e. 25 m
$ \Rightarrow \dfrac{{{{\text{u}}^2}{\text{si}}{{\text{n}}^2}\theta }}{{2g}} = 25$
Hence find the value of ${\text{sin}}\theta $ from here
$ \Rightarrow {\text{si}}{{\text{n}}^2}\theta = \dfrac{{25 \times 2g}}{{{{\text{u}}^2}}}$
$ \Rightarrow {\text{si}}{{\text{n}}^2}\theta = \dfrac{{25 \times 20}}{{1600}} = \dfrac{{500}}{{1600}} = \dfrac{5}{{16}}$
$ \Rightarrow {\text{sin}}\theta = \sqrt {\dfrac{5}{{16}}} $ ………….(1)
$ \Rightarrow \cos \theta = \sqrt {1 - {{\sin }^2}\theta } = \sqrt {1 - \dfrac{5}{{16}}} = \sqrt {\dfrac{{11}}{{16}}} $ …………(2)
We know that the maximum horizontal distance will be equal to the horizontal range in projectile motion.
$ \Rightarrow {\text{Range (R) = }}\dfrac{{{{\text{u}}^2}\sin 2\theta }}{g}$
Using $\sin 2\theta = {\text{ }}2\sin \theta \cos \theta $
$ \Rightarrow {\text{R = }}\dfrac{{{{\text{u}}^2}\left( {2\sin \theta \cos \theta } \right)}}{g}$
Hence on putting the values of $\sin \theta {\text{& cos}}\theta $ from expression (1) and (2)
$ \Rightarrow {\text{R = }}\dfrac{{1600\left( {2\sqrt {\dfrac{5}{{16}}} \times \sqrt {\dfrac{{11}}{{16}}} } \right)}}{{10}} = 160 \times 2\dfrac{{\sqrt {55} }}{{16}} = 20 \times \sqrt {55} = 148.32$
Therefore, Range (R) = 148.32 m
Note- In the question of projectile motion, it is advisable to remember some general formulas of projectile motion as formula of maximum height, Range and Time of flight, then this way we can save our time otherwise it will be lengthier to derive every time and chances of mistakes also increases.
Complete step-by-step solution -
In the question it is given that,
Initial velocity u= 40 m/s
Maximum height H =25 m
Consider $g = 10{\text{ }}\dfrac{{\text{m}}}{{{{\sec }^2}}}$
we know that he maximum height in projectile motion equal to $\dfrac{{{{\text{u}}^2}{\text{si}}{{\text{n}}^2}\theta }}{{2g}}$
so equalising it with given maximum height in question i.e. 25 m
$ \Rightarrow \dfrac{{{{\text{u}}^2}{\text{si}}{{\text{n}}^2}\theta }}{{2g}} = 25$
Hence find the value of ${\text{sin}}\theta $ from here
$ \Rightarrow {\text{si}}{{\text{n}}^2}\theta = \dfrac{{25 \times 2g}}{{{{\text{u}}^2}}}$
$ \Rightarrow {\text{si}}{{\text{n}}^2}\theta = \dfrac{{25 \times 20}}{{1600}} = \dfrac{{500}}{{1600}} = \dfrac{5}{{16}}$
$ \Rightarrow {\text{sin}}\theta = \sqrt {\dfrac{5}{{16}}} $ ………….(1)
$ \Rightarrow \cos \theta = \sqrt {1 - {{\sin }^2}\theta } = \sqrt {1 - \dfrac{5}{{16}}} = \sqrt {\dfrac{{11}}{{16}}} $ …………(2)
We know that the maximum horizontal distance will be equal to the horizontal range in projectile motion.
$ \Rightarrow {\text{Range (R) = }}\dfrac{{{{\text{u}}^2}\sin 2\theta }}{g}$
Using $\sin 2\theta = {\text{ }}2\sin \theta \cos \theta $
$ \Rightarrow {\text{R = }}\dfrac{{{{\text{u}}^2}\left( {2\sin \theta \cos \theta } \right)}}{g}$
Hence on putting the values of $\sin \theta {\text{& cos}}\theta $ from expression (1) and (2)
$ \Rightarrow {\text{R = }}\dfrac{{1600\left( {2\sqrt {\dfrac{5}{{16}}} \times \sqrt {\dfrac{{11}}{{16}}} } \right)}}{{10}} = 160 \times 2\dfrac{{\sqrt {55} }}{{16}} = 20 \times \sqrt {55} = 148.32$
Therefore, Range (R) = 148.32 m
Note- In the question of projectile motion, it is advisable to remember some general formulas of projectile motion as formula of maximum height, Range and Time of flight, then this way we can save our time otherwise it will be lengthier to derive every time and chances of mistakes also increases.
Recently Updated Pages
Chemical Equation - Important Concepts and Tips for JEE

JEE Main 2022 (July 29th Shift 1) Chemistry Question Paper with Answer Key

Conduction, Transfer of Energy Important Concepts and Tips for JEE

JEE Analytical Method of Vector Addition Important Concepts and Tips

Atomic Size - Important Concepts and Tips for JEE

JEE Main 2022 (June 29th Shift 1) Maths Question Paper with Answer Key

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

JEE Main Correction Window 2026 Session 1 Dates Announced - Edit Form Details, Dates and Link

Equation of Trajectory in Projectile Motion: Derivation & Proof

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

Hybridisation in Chemistry – Concept, Types & Applications

Angle of Deviation in a Prism – Formula, Diagram & Applications

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Units And Measurements Class 11 Physics Chapter 1 CBSE Notes - 2025-26

NCERT Solutions For Class 11 Physics Chapter 8 Mechanical Properties Of Solids

Motion in a Straight Line Class 11 Physics Chapter 2 CBSE Notes - 2025-26

NCERT Solutions for Class 11 Physics Chapter 7 Gravitation 2025-26

Collision: Meaning, Types & Examples in Physics

