
The bulk modulus of a spherical object is$B$ . It is subjected to uniform pressure $P$ the fractional decrease in radius is:
$\left( a \right)$ $\dfrac{P}{{3B}}$
$\left( b \right)$ $\dfrac{P}{B}$
$\left( c \right)$ $\dfrac{B}{{3P}}$
$\left( d \right)$ $\dfrac{{3P}}{B}$
Answer
146.1k+ views
Hint As we know the volume of the sphere. $V = \dfrac{4}{3}\pi {r^3}$. We will differentiate both sides with respect to $r$ and after dividing the equation by $V$, we will get the new equation, and then by using the bulk modulus we would be able to get the fractional decrease in the radius.
Formula used:
The volume of the sphere will be given by,
$V = \dfrac{4}{3}\pi {r^3}$
Here,
$V$, will be the volume
$r$ , will be the radius
Bulk modulus,
$B = \dfrac{{ - P}}{{\dfrac{{\vartriangle V}}{V}}}$
Here,
$B$, will be the bulk modulus
$P$, will be the pressure
$\vartriangle V$, change in the volume
Complete Step By Step Solution
As we already know,
The volume of the sphere is given by
$V = \dfrac{4}{3}\pi {r^3}$
So we will now differentiate the above equation both sides with respect to $r$
We get,
$ \Rightarrow \dfrac{{dV}}{{dr}} = 3\left( {\dfrac{4}{3}\pi {r^2}} \right)$
So on simplifying we get,
$ \Rightarrow \dfrac{{dV}}{{dr}} = 4\pi {r^2}$
Here the term $dV$can be written as $\vartriangle V$and similarly $dr$as$\vartriangle r$.
Therefore,
$ \Rightarrow \vartriangle V = 4\pi {r^2}\vartriangle r$
Now dividing the above equation by$V$, and also putting the value of $V$on the RHS side, we get
$ \Rightarrow \dfrac{{\vartriangle v}}{v} = \dfrac{{4\pi {r^2}\vartriangle r}}{{\dfrac{4}{3}\pi {r^3}}}$
So on solving the above equation, we get
$ \Rightarrow \dfrac{{\vartriangle v}}{v} = 3\dfrac{{\vartriangle r}}{r}$
Now by using the bulk modulus, we get
$B = \dfrac{{ - P}}{{\dfrac{{\vartriangle V}}{V}}}$
Substituting the values, we get
$ \Rightarrow B = \dfrac{{ - P}}{{\dfrac{{3\vartriangle r}}{r}}}$
And it can be written as,
$ \Rightarrow \dfrac{{\vartriangle r}}{r} = \dfrac{P}{{3B}}$
Therefore, the option $A$ will be the correct one.
Note Bulk modulus, mathematical consistency that portrays the versatile properties of a strong or liquid when it is feeling the squeeze on all surfaces. The applied weight lessens the volume of a material, which re-visitations of its unique volume when the weight is taken out. At times alluded to as the inconceivability, the mass modulus is a proportion of the capacity of a substance to withstand changes in volume when under pressure on all sides. It is equivalent to the remainder of the applied weight isolated by the relative distortion.
Formula used:
The volume of the sphere will be given by,
$V = \dfrac{4}{3}\pi {r^3}$
Here,
$V$, will be the volume
$r$ , will be the radius
Bulk modulus,
$B = \dfrac{{ - P}}{{\dfrac{{\vartriangle V}}{V}}}$
Here,
$B$, will be the bulk modulus
$P$, will be the pressure
$\vartriangle V$, change in the volume
Complete Step By Step Solution
As we already know,
The volume of the sphere is given by
$V = \dfrac{4}{3}\pi {r^3}$
So we will now differentiate the above equation both sides with respect to $r$
We get,
$ \Rightarrow \dfrac{{dV}}{{dr}} = 3\left( {\dfrac{4}{3}\pi {r^2}} \right)$
So on simplifying we get,
$ \Rightarrow \dfrac{{dV}}{{dr}} = 4\pi {r^2}$
Here the term $dV$can be written as $\vartriangle V$and similarly $dr$as$\vartriangle r$.
Therefore,
$ \Rightarrow \vartriangle V = 4\pi {r^2}\vartriangle r$
Now dividing the above equation by$V$, and also putting the value of $V$on the RHS side, we get
$ \Rightarrow \dfrac{{\vartriangle v}}{v} = \dfrac{{4\pi {r^2}\vartriangle r}}{{\dfrac{4}{3}\pi {r^3}}}$
So on solving the above equation, we get
$ \Rightarrow \dfrac{{\vartriangle v}}{v} = 3\dfrac{{\vartriangle r}}{r}$
Now by using the bulk modulus, we get
$B = \dfrac{{ - P}}{{\dfrac{{\vartriangle V}}{V}}}$
Substituting the values, we get
$ \Rightarrow B = \dfrac{{ - P}}{{\dfrac{{3\vartriangle r}}{r}}}$
And it can be written as,
$ \Rightarrow \dfrac{{\vartriangle r}}{r} = \dfrac{P}{{3B}}$
Therefore, the option $A$ will be the correct one.
Note Bulk modulus, mathematical consistency that portrays the versatile properties of a strong or liquid when it is feeling the squeeze on all surfaces. The applied weight lessens the volume of a material, which re-visitations of its unique volume when the weight is taken out. At times alluded to as the inconceivability, the mass modulus is a proportion of the capacity of a substance to withstand changes in volume when under pressure on all sides. It is equivalent to the remainder of the applied weight isolated by the relative distortion.
Recently Updated Pages
How to find Oxidation Number - Important Concepts for JEE

How Electromagnetic Waves are Formed - Important Concepts for JEE

Electrical Resistance - Important Concepts and Tips for JEE

Average Atomic Mass - Important Concepts and Tips for JEE

Chemical Equation - Important Concepts and Tips for JEE

Concept of CP and CV of Gas - Important Concepts and Tips for JEE

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main Exam Marking Scheme: Detailed Breakdown of Marks and Negative Marking

JEE Main 2025: Derivation of Equation of Trajectory in Physics

JEE Main Participating Colleges 2024 - A Complete List of Top Colleges

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

Degree of Dissociation and Its Formula With Solved Example for JEE

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced 2025: Dates, Registration, Syllabus, Eligibility Criteria and More

Units and Measurements Class 11 Notes: CBSE Physics Chapter 1

NCERT Solutions for Class 11 Physics Chapter 1 Units and Measurements

Motion in a Straight Line Class 11 Notes: CBSE Physics Chapter 2

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry
