
The bulk modulus of a spherical object is$B$ . It is subjected to uniform pressure $P$ the fractional decrease in radius is:
$\left( a \right)$ $\dfrac{P}{{3B}}$
$\left( b \right)$ $\dfrac{P}{B}$
$\left( c \right)$ $\dfrac{B}{{3P}}$
$\left( d \right)$ $\dfrac{{3P}}{B}$
Answer
232.8k+ views
Hint As we know the volume of the sphere. $V = \dfrac{4}{3}\pi {r^3}$. We will differentiate both sides with respect to $r$ and after dividing the equation by $V$, we will get the new equation, and then by using the bulk modulus we would be able to get the fractional decrease in the radius.
Formula used:
The volume of the sphere will be given by,
$V = \dfrac{4}{3}\pi {r^3}$
Here,
$V$, will be the volume
$r$ , will be the radius
Bulk modulus,
$B = \dfrac{{ - P}}{{\dfrac{{\vartriangle V}}{V}}}$
Here,
$B$, will be the bulk modulus
$P$, will be the pressure
$\vartriangle V$, change in the volume
Complete Step By Step Solution
As we already know,
The volume of the sphere is given by
$V = \dfrac{4}{3}\pi {r^3}$
So we will now differentiate the above equation both sides with respect to $r$
We get,
$ \Rightarrow \dfrac{{dV}}{{dr}} = 3\left( {\dfrac{4}{3}\pi {r^2}} \right)$
So on simplifying we get,
$ \Rightarrow \dfrac{{dV}}{{dr}} = 4\pi {r^2}$
Here the term $dV$can be written as $\vartriangle V$and similarly $dr$as$\vartriangle r$.
Therefore,
$ \Rightarrow \vartriangle V = 4\pi {r^2}\vartriangle r$
Now dividing the above equation by$V$, and also putting the value of $V$on the RHS side, we get
$ \Rightarrow \dfrac{{\vartriangle v}}{v} = \dfrac{{4\pi {r^2}\vartriangle r}}{{\dfrac{4}{3}\pi {r^3}}}$
So on solving the above equation, we get
$ \Rightarrow \dfrac{{\vartriangle v}}{v} = 3\dfrac{{\vartriangle r}}{r}$
Now by using the bulk modulus, we get
$B = \dfrac{{ - P}}{{\dfrac{{\vartriangle V}}{V}}}$
Substituting the values, we get
$ \Rightarrow B = \dfrac{{ - P}}{{\dfrac{{3\vartriangle r}}{r}}}$
And it can be written as,
$ \Rightarrow \dfrac{{\vartriangle r}}{r} = \dfrac{P}{{3B}}$
Therefore, the option $A$ will be the correct one.
Note Bulk modulus, mathematical consistency that portrays the versatile properties of a strong or liquid when it is feeling the squeeze on all surfaces. The applied weight lessens the volume of a material, which re-visitations of its unique volume when the weight is taken out. At times alluded to as the inconceivability, the mass modulus is a proportion of the capacity of a substance to withstand changes in volume when under pressure on all sides. It is equivalent to the remainder of the applied weight isolated by the relative distortion.
Formula used:
The volume of the sphere will be given by,
$V = \dfrac{4}{3}\pi {r^3}$
Here,
$V$, will be the volume
$r$ , will be the radius
Bulk modulus,
$B = \dfrac{{ - P}}{{\dfrac{{\vartriangle V}}{V}}}$
Here,
$B$, will be the bulk modulus
$P$, will be the pressure
$\vartriangle V$, change in the volume
Complete Step By Step Solution
As we already know,
The volume of the sphere is given by
$V = \dfrac{4}{3}\pi {r^3}$
So we will now differentiate the above equation both sides with respect to $r$
We get,
$ \Rightarrow \dfrac{{dV}}{{dr}} = 3\left( {\dfrac{4}{3}\pi {r^2}} \right)$
So on simplifying we get,
$ \Rightarrow \dfrac{{dV}}{{dr}} = 4\pi {r^2}$
Here the term $dV$can be written as $\vartriangle V$and similarly $dr$as$\vartriangle r$.
Therefore,
$ \Rightarrow \vartriangle V = 4\pi {r^2}\vartriangle r$
Now dividing the above equation by$V$, and also putting the value of $V$on the RHS side, we get
$ \Rightarrow \dfrac{{\vartriangle v}}{v} = \dfrac{{4\pi {r^2}\vartriangle r}}{{\dfrac{4}{3}\pi {r^3}}}$
So on solving the above equation, we get
$ \Rightarrow \dfrac{{\vartriangle v}}{v} = 3\dfrac{{\vartriangle r}}{r}$
Now by using the bulk modulus, we get
$B = \dfrac{{ - P}}{{\dfrac{{\vartriangle V}}{V}}}$
Substituting the values, we get
$ \Rightarrow B = \dfrac{{ - P}}{{\dfrac{{3\vartriangle r}}{r}}}$
And it can be written as,
$ \Rightarrow \dfrac{{\vartriangle r}}{r} = \dfrac{P}{{3B}}$
Therefore, the option $A$ will be the correct one.
Note Bulk modulus, mathematical consistency that portrays the versatile properties of a strong or liquid when it is feeling the squeeze on all surfaces. The applied weight lessens the volume of a material, which re-visitations of its unique volume when the weight is taken out. At times alluded to as the inconceivability, the mass modulus is a proportion of the capacity of a substance to withstand changes in volume when under pressure on all sides. It is equivalent to the remainder of the applied weight isolated by the relative distortion.
Recently Updated Pages
JEE Main 2023 April 6 Shift 1 Question Paper with Answer Key

JEE Main 2023 April 6 Shift 2 Question Paper with Answer Key

JEE Main 2023 (January 31 Evening Shift) Question Paper with Solutions [PDF]

JEE Main 2023 January 30 Shift 2 Question Paper with Answer Key

JEE Main 2023 January 25 Shift 1 Question Paper with Answer Key

JEE Main 2023 January 24 Shift 2 Question Paper with Answer Key

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Understanding Uniform Acceleration in Physics

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Laws of Motion Class 11 Physics Chapter 4 CBSE Notes - 2025-26

Waves Class 11 Physics Chapter 14 CBSE Notes - 2025-26

Mechanical Properties of Fluids Class 11 Physics Chapter 9 CBSE Notes - 2025-26

Thermodynamics Class 11 Physics Chapter 11 CBSE Notes - 2025-26

Units And Measurements Class 11 Physics Chapter 1 CBSE Notes - 2025-26

