
The bulk modulus of a spherical object is$B$ . It is subjected to uniform pressure $P$ the fractional decrease in radius is:
$\left( a \right)$ $\dfrac{P}{{3B}}$
$\left( b \right)$ $\dfrac{P}{B}$
$\left( c \right)$ $\dfrac{B}{{3P}}$
$\left( d \right)$ $\dfrac{{3P}}{B}$
Answer
123.6k+ views
Hint As we know the volume of the sphere. $V = \dfrac{4}{3}\pi {r^3}$. We will differentiate both sides with respect to $r$ and after dividing the equation by $V$, we will get the new equation, and then by using the bulk modulus we would be able to get the fractional decrease in the radius.
Formula used:
The volume of the sphere will be given by,
$V = \dfrac{4}{3}\pi {r^3}$
Here,
$V$, will be the volume
$r$ , will be the radius
Bulk modulus,
$B = \dfrac{{ - P}}{{\dfrac{{\vartriangle V}}{V}}}$
Here,
$B$, will be the bulk modulus
$P$, will be the pressure
$\vartriangle V$, change in the volume
Complete Step By Step Solution
As we already know,
The volume of the sphere is given by
$V = \dfrac{4}{3}\pi {r^3}$
So we will now differentiate the above equation both sides with respect to $r$
We get,
$ \Rightarrow \dfrac{{dV}}{{dr}} = 3\left( {\dfrac{4}{3}\pi {r^2}} \right)$
So on simplifying we get,
$ \Rightarrow \dfrac{{dV}}{{dr}} = 4\pi {r^2}$
Here the term $dV$can be written as $\vartriangle V$and similarly $dr$as$\vartriangle r$.
Therefore,
$ \Rightarrow \vartriangle V = 4\pi {r^2}\vartriangle r$
Now dividing the above equation by$V$, and also putting the value of $V$on the RHS side, we get
$ \Rightarrow \dfrac{{\vartriangle v}}{v} = \dfrac{{4\pi {r^2}\vartriangle r}}{{\dfrac{4}{3}\pi {r^3}}}$
So on solving the above equation, we get
$ \Rightarrow \dfrac{{\vartriangle v}}{v} = 3\dfrac{{\vartriangle r}}{r}$
Now by using the bulk modulus, we get
$B = \dfrac{{ - P}}{{\dfrac{{\vartriangle V}}{V}}}$
Substituting the values, we get
$ \Rightarrow B = \dfrac{{ - P}}{{\dfrac{{3\vartriangle r}}{r}}}$
And it can be written as,
$ \Rightarrow \dfrac{{\vartriangle r}}{r} = \dfrac{P}{{3B}}$
Therefore, the option $A$ will be the correct one.
Note Bulk modulus, mathematical consistency that portrays the versatile properties of a strong or liquid when it is feeling the squeeze on all surfaces. The applied weight lessens the volume of a material, which re-visitations of its unique volume when the weight is taken out. At times alluded to as the inconceivability, the mass modulus is a proportion of the capacity of a substance to withstand changes in volume when under pressure on all sides. It is equivalent to the remainder of the applied weight isolated by the relative distortion.
Formula used:
The volume of the sphere will be given by,
$V = \dfrac{4}{3}\pi {r^3}$
Here,
$V$, will be the volume
$r$ , will be the radius
Bulk modulus,
$B = \dfrac{{ - P}}{{\dfrac{{\vartriangle V}}{V}}}$
Here,
$B$, will be the bulk modulus
$P$, will be the pressure
$\vartriangle V$, change in the volume
Complete Step By Step Solution
As we already know,
The volume of the sphere is given by
$V = \dfrac{4}{3}\pi {r^3}$
So we will now differentiate the above equation both sides with respect to $r$
We get,
$ \Rightarrow \dfrac{{dV}}{{dr}} = 3\left( {\dfrac{4}{3}\pi {r^2}} \right)$
So on simplifying we get,
$ \Rightarrow \dfrac{{dV}}{{dr}} = 4\pi {r^2}$
Here the term $dV$can be written as $\vartriangle V$and similarly $dr$as$\vartriangle r$.
Therefore,
$ \Rightarrow \vartriangle V = 4\pi {r^2}\vartriangle r$
Now dividing the above equation by$V$, and also putting the value of $V$on the RHS side, we get
$ \Rightarrow \dfrac{{\vartriangle v}}{v} = \dfrac{{4\pi {r^2}\vartriangle r}}{{\dfrac{4}{3}\pi {r^3}}}$
So on solving the above equation, we get
$ \Rightarrow \dfrac{{\vartriangle v}}{v} = 3\dfrac{{\vartriangle r}}{r}$
Now by using the bulk modulus, we get
$B = \dfrac{{ - P}}{{\dfrac{{\vartriangle V}}{V}}}$
Substituting the values, we get
$ \Rightarrow B = \dfrac{{ - P}}{{\dfrac{{3\vartriangle r}}{r}}}$
And it can be written as,
$ \Rightarrow \dfrac{{\vartriangle r}}{r} = \dfrac{P}{{3B}}$
Therefore, the option $A$ will be the correct one.
Note Bulk modulus, mathematical consistency that portrays the versatile properties of a strong or liquid when it is feeling the squeeze on all surfaces. The applied weight lessens the volume of a material, which re-visitations of its unique volume when the weight is taken out. At times alluded to as the inconceivability, the mass modulus is a proportion of the capacity of a substance to withstand changes in volume when under pressure on all sides. It is equivalent to the remainder of the applied weight isolated by the relative distortion.
Recently Updated Pages
JEE Main 2023 (January 31st Shift 1) Physics Question Paper with Answer Key

JEE Main 2023 (January 24th Shift 1) Physics Question Paper with Answer Key

Electrical Field of Charged Spherical Shell - Important Concepts and Tips for JEE

Clemmensen and Wolff Kishner Reduction - Important Concepts and Tips for JEE

JEE Main Maths Paper Pattern 2025 – Marking, Sections & Tips

JEE Main 2023 (January 25th Shift 1) Physics Question Paper with Answer Key

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility & More

JEE Main Login 2045: Step-by-Step Instructions and Details

Class 11 JEE Main Physics Mock Test 2025

JEE Main Exam Marking Scheme: Detailed Breakdown of Marks and Negative Marking

JEE Main 2023 January 24 Shift 2 Question Paper with Answer Keys & Solutions

JEE Main 2025: Conversion of Galvanometer Into Ammeter And Voltmeter in Physics

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions for Class 11 Physics Chapter 1 Units and Measurements

NCERT Solutions for Class 11 Physics Chapter 9 Mechanical Properties of Fluids

Units and Measurements Class 11 Notes: CBSE Physics Chapter 1

JEE Advanced 2025: Dates, Registration, Syllabus, Eligibility Criteria and More

NCERT Solutions for Class 11 Physics Chapter 2 Motion In A Straight Line
