
The bob of a pendulum is positively charged. Another identical charge is placed at the point of suspension of the pendulum. The time period of pendulum
A) Increases
B) Decreases
C) Becomes Zero
D) Remains same
Answer
219k+ views
Hint:In this question, a pendulum is a weight suspended from a pivot so that it can swing freely. When a pendulum is displaced sideways from its resting equilibrium position it is subject to a restoring force due to gravity.
Complete step by step solution:
In this question, the job of a pendulum is positively charged. Another identical charge is placed at the point of suspension of the pendulum. The time period of pendulum
The force due to the charge kept at the suspension point always acts along the wire which is compensated by increasing the tension of the string. We have to increase the wire length to get the positive charge of the wire. This force never accounts for charge in a time period since it has no component perpendicular to the wire.
As we know that the time period of pendulum when job of a pendulum positively charged is
${T_1} = mg\sin \theta l......\left( {\text{I}} \right)$
Here, mass of the pendulum is $m$, the gravitational constant is $g$, the angle between the axis and the actual axis of the pendulum is $\theta $ and length of the pendulum string is $l$.
Similarly, the time period of pendulum when another identical charge is placed at the point of suspension of the pendulum is
${T_2} = mg\sin \theta l......\left( {{\text{II}}} \right)$
Now, we Compare equation (I) and (II).
$\therefore {T_1} = {T_2}$
Therefore, the time period will remain constant.
Hence, the correct option is (C).
Note:Do not confuse with the same formula of the time period in both cases as the angle $\alpha = - {\omega ^2}\theta $ is remains constant in both the cases, and due to which the time period is also remains constant for the both cases.
Complete step by step solution:
In this question, the job of a pendulum is positively charged. Another identical charge is placed at the point of suspension of the pendulum. The time period of pendulum
The force due to the charge kept at the suspension point always acts along the wire which is compensated by increasing the tension of the string. We have to increase the wire length to get the positive charge of the wire. This force never accounts for charge in a time period since it has no component perpendicular to the wire.
As we know that the time period of pendulum when job of a pendulum positively charged is
${T_1} = mg\sin \theta l......\left( {\text{I}} \right)$
Here, mass of the pendulum is $m$, the gravitational constant is $g$, the angle between the axis and the actual axis of the pendulum is $\theta $ and length of the pendulum string is $l$.
Similarly, the time period of pendulum when another identical charge is placed at the point of suspension of the pendulum is
${T_2} = mg\sin \theta l......\left( {{\text{II}}} \right)$
Now, we Compare equation (I) and (II).
$\therefore {T_1} = {T_2}$
Therefore, the time period will remain constant.
Hence, the correct option is (C).
Note:Do not confuse with the same formula of the time period in both cases as the angle $\alpha = - {\omega ^2}\theta $ is remains constant in both the cases, and due to which the time period is also remains constant for the both cases.
Recently Updated Pages
Two discs which are rotating about their respective class 11 physics JEE_Main

A ladder rests against a frictionless vertical wall class 11 physics JEE_Main

Two simple pendulums of lengths 1 m and 16 m respectively class 11 physics JEE_Main

The slopes of isothermal and adiabatic curves are related class 11 physics JEE_Main

A trolly falling freely on an inclined plane as shown class 11 physics JEE_Main

The masses M1 and M2M2 M1 are released from rest Using class 11 physics JEE_Main

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Understanding Uniform Acceleration in Physics

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

Understanding Collisions: Types and Examples for Students

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Units And Measurements Class 11 Physics Chapter 1 CBSE Notes - 2025-26

NCERT Solutions For Class 11 Physics Chapter 8 Mechanical Properties Of Solids

Motion in a Straight Line Class 11 Physics Chapter 2 CBSE Notes - 2025-26

NCERT Solutions for Class 11 Physics Chapter 7 Gravitation 2025-26

Understanding Atomic Structure for Beginners

