
The bob of a pendulum is positively charged. Another identical charge is placed at the point of suspension of the pendulum. The time period of pendulum
A) Increases
B) Decreases
C) Becomes Zero
D) Remains same
Answer
232.8k+ views
Hint:In this question, a pendulum is a weight suspended from a pivot so that it can swing freely. When a pendulum is displaced sideways from its resting equilibrium position it is subject to a restoring force due to gravity.
Complete step by step solution:
In this question, the job of a pendulum is positively charged. Another identical charge is placed at the point of suspension of the pendulum. The time period of pendulum
The force due to the charge kept at the suspension point always acts along the wire which is compensated by increasing the tension of the string. We have to increase the wire length to get the positive charge of the wire. This force never accounts for charge in a time period since it has no component perpendicular to the wire.
As we know that the time period of pendulum when job of a pendulum positively charged is
${T_1} = mg\sin \theta l......\left( {\text{I}} \right)$
Here, mass of the pendulum is $m$, the gravitational constant is $g$, the angle between the axis and the actual axis of the pendulum is $\theta $ and length of the pendulum string is $l$.
Similarly, the time period of pendulum when another identical charge is placed at the point of suspension of the pendulum is
${T_2} = mg\sin \theta l......\left( {{\text{II}}} \right)$
Now, we Compare equation (I) and (II).
$\therefore {T_1} = {T_2}$
Therefore, the time period will remain constant.
Hence, the correct option is (C).
Note:Do not confuse with the same formula of the time period in both cases as the angle $\alpha = - {\omega ^2}\theta $ is remains constant in both the cases, and due to which the time period is also remains constant for the both cases.
Complete step by step solution:
In this question, the job of a pendulum is positively charged. Another identical charge is placed at the point of suspension of the pendulum. The time period of pendulum
The force due to the charge kept at the suspension point always acts along the wire which is compensated by increasing the tension of the string. We have to increase the wire length to get the positive charge of the wire. This force never accounts for charge in a time period since it has no component perpendicular to the wire.
As we know that the time period of pendulum when job of a pendulum positively charged is
${T_1} = mg\sin \theta l......\left( {\text{I}} \right)$
Here, mass of the pendulum is $m$, the gravitational constant is $g$, the angle between the axis and the actual axis of the pendulum is $\theta $ and length of the pendulum string is $l$.
Similarly, the time period of pendulum when another identical charge is placed at the point of suspension of the pendulum is
${T_2} = mg\sin \theta l......\left( {{\text{II}}} \right)$
Now, we Compare equation (I) and (II).
$\therefore {T_1} = {T_2}$
Therefore, the time period will remain constant.
Hence, the correct option is (C).
Note:Do not confuse with the same formula of the time period in both cases as the angle $\alpha = - {\omega ^2}\theta $ is remains constant in both the cases, and due to which the time period is also remains constant for the both cases.
Recently Updated Pages
Dimensions of Charge: Dimensional Formula, Derivation, SI Units & Examples

How to Calculate Moment of Inertia: Step-by-Step Guide & Formulas

Circuit Switching vs Packet Switching: Key Differences Explained

Dimensions of Pressure in Physics: Formula, Derivation & SI Unit

JEE General Topics in Chemistry Important Concepts and Tips

JEE Extractive Metallurgy Important Concepts and Tips for Exam Preparation

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Laws of Motion Class 11 Physics Chapter 4 CBSE Notes - 2025-26

Waves Class 11 Physics Chapter 14 CBSE Notes - 2025-26

Mechanical Properties of Fluids Class 11 Physics Chapter 9 CBSE Notes - 2025-26

Thermodynamics Class 11 Physics Chapter 11 CBSE Notes - 2025-26

Units And Measurements Class 11 Physics Chapter 1 CBSE Notes - 2025-26

