The binding energy per nucleon of iron atoms is approximately.
(A) 13.6 eV
(B) 8.8 MeV
(C) Infinity
(D) 10 MeV
Answer
Verified
119.1k+ views
Hint: We know that the binding energy is defined as the amount of the energy that is required to separate a particle from a system of the particles, or to disperse all the particles, of the system. Binding energy is especially applicable to the subatomic particles in the atomic nuclei, to the electrons that are bound to the nuclei in the atoms, and to the atoms and ions bound together in the crystals. Based on this concept we have to answer this question.
Complete step by step answer:
First, we have to examine the binding energy that is present per nucleon of an iron atom.
The maximum binding energy per nucleon occurs at around mass number $A=50$, and corresponds to the most stable nuclei. When we say mass number and denote it by A, we mean that it is the integer value to the atomic weight of an atom and equal to the number of nucleons in the nucleus of the atom.
Iron nucleus ${{F}^{56}}$ is located close to the peak with a binding energy per nucleon value of approximately 8.8MeV.
So, we can conclude that it is one of the most stable nuclides that exist.
Hence, the correct answer is Option B.
Note: We should know that electron binding energy is also known as ionization potential. It is defined as the amount of energy that is required to remove an electron from an atom, a molecule or an ion.
In case of an electron, which is negatively charged, is attached to the nucleus of an atom because of the positive charge present there. The amount of energy that is required to be given to the electron to pull it away from an attractive force, which is also known as the Coulombic force, is the idea given by binding energy.
The binding energy of a single proton or neutron in a nucleus is approximately a million times greater than the binding energy of a single electron that is present inside an atom.
Complete step by step answer:
First, we have to examine the binding energy that is present per nucleon of an iron atom.
The maximum binding energy per nucleon occurs at around mass number $A=50$, and corresponds to the most stable nuclei. When we say mass number and denote it by A, we mean that it is the integer value to the atomic weight of an atom and equal to the number of nucleons in the nucleus of the atom.
Iron nucleus ${{F}^{56}}$ is located close to the peak with a binding energy per nucleon value of approximately 8.8MeV.
So, we can conclude that it is one of the most stable nuclides that exist.
Hence, the correct answer is Option B.
Note: We should know that electron binding energy is also known as ionization potential. It is defined as the amount of energy that is required to remove an electron from an atom, a molecule or an ion.
In case of an electron, which is negatively charged, is attached to the nucleus of an atom because of the positive charge present there. The amount of energy that is required to be given to the electron to pull it away from an attractive force, which is also known as the Coulombic force, is the idea given by binding energy.
The binding energy of a single proton or neutron in a nucleus is approximately a million times greater than the binding energy of a single electron that is present inside an atom.
Recently Updated Pages
The ratio of the diameters of two metallic rods of class 11 physics JEE_Main
What is the difference between Conduction and conv class 11 physics JEE_Main
Mark the correct statements about the friction between class 11 physics JEE_Main
Find the acceleration of the wedge towards the right class 11 physics JEE_Main
A standing wave is formed by the superposition of two class 11 physics JEE_Main
Derive an expression for work done by the gas in an class 11 physics JEE_Main
Trending doubts
JEE Main 2025: Application Form (Out), Exam Dates (Released), Eligibility & More
JEE Main Login 2045: Step-by-Step Instructions and Details
JEE Main Chemistry Question Paper with Answer Keys and Solutions
Learn About Angle Of Deviation In Prism: JEE Main Physics 2025
JEE Main 2025: Conversion of Galvanometer Into Ammeter And Voltmeter in Physics
JEE Main Exam Marking Scheme: Detailed Breakdown of Marks and Negative Marking
Other Pages
NCERT Solutions for Class 11 Physics Chapter 7 Gravitation
NCERT Solutions for Class 11 Physics Chapter 1 Units and Measurements
NCERT Solutions for Class 11 Physics Chapter 9 Mechanical Properties of Fluids
Units and Measurements Class 11 Notes - CBSE Physics Chapter 1
NCERT Solutions for Class 11 Physics Chapter 2 Motion In A Straight Line
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs