Answer
Verified
87.3k+ views
Hint: Draw the diagram of the given problem statement for a better understanding of the situation. Use the trigonometric ratios, that are $\sin \theta = \dfrac{{{\text{Opposite}}}}{{{\text{Hypotenuse}}}}$ and $\tan \theta = \dfrac{{{\text{Perpendicular}}}}{{{\text{Base}}}}$ in the physical triangle formed to find the height of the tower.
Complete step by step answer:
Let us assume the point at a foot distant from the tower be $P$.
We can draw the figure for the given scenario, where the flagstaff is fixed on the top of the tower, which is a foot distant from $P$.
The point $P$ lies in the plane of the bottom of the tower. The angle of elevation from point P to the top of the flag staff is $\alpha $ and angle of elevation from the point $P$ to the bottom of the flag staff is $\beta $.
Here $BC$ represents the height of the tower and $AB$ represents the height of the flag staff.
From the figure, in the triangle $PBC$
$\tan \beta = \dfrac{{BC}}{{PC}}$
Substituting $a$ for \[PC\] we get
$\tan \beta = \dfrac{{BC}}{a}$
On simplifying, we get
$a\tan \beta = BC$
Here $BC$ represents the height of the tower, therefore, the height of the tower is $a\tan \beta $.
Thus option D i.e. none of these is the correct answer.
Note: The diagram should be drawn correctly according to the given conditions correctly. The angle of elevation of a higher point is more than that for a lower point in the same vertical line. In a right angled triangle, the $\tan \theta $ is the equal to $\dfrac{{{\text{Perpendicular}}}}{{{\text{Base}}}}$, where perpendicular is the side opposite to the angle $\theta $, and $\sin \theta $ is the equal to $\dfrac{{{\text{Perpendicular}}}}{{{\text{Hypotenuse}}}}$, where perpendicular is the side opposite to the angle $\theta $.
Complete step by step answer:
Let us assume the point at a foot distant from the tower be $P$.
We can draw the figure for the given scenario, where the flagstaff is fixed on the top of the tower, which is a foot distant from $P$.
The point $P$ lies in the plane of the bottom of the tower. The angle of elevation from point P to the top of the flag staff is $\alpha $ and angle of elevation from the point $P$ to the bottom of the flag staff is $\beta $.
Here $BC$ represents the height of the tower and $AB$ represents the height of the flag staff.
From the figure, in the triangle $PBC$
$\tan \beta = \dfrac{{BC}}{{PC}}$
Substituting $a$ for \[PC\] we get
$\tan \beta = \dfrac{{BC}}{a}$
On simplifying, we get
$a\tan \beta = BC$
Here $BC$ represents the height of the tower, therefore, the height of the tower is $a\tan \beta $.
Thus option D i.e. none of these is the correct answer.
Note: The diagram should be drawn correctly according to the given conditions correctly. The angle of elevation of a higher point is more than that for a lower point in the same vertical line. In a right angled triangle, the $\tan \theta $ is the equal to $\dfrac{{{\text{Perpendicular}}}}{{{\text{Base}}}}$, where perpendicular is the side opposite to the angle $\theta $, and $\sin \theta $ is the equal to $\dfrac{{{\text{Perpendicular}}}}{{{\text{Hypotenuse}}}}$, where perpendicular is the side opposite to the angle $\theta $.
Recently Updated Pages
Name the scale on which the destructive energy of an class 11 physics JEE_Main
Write an article on the need and importance of sports class 10 english JEE_Main
Choose the exact meaning of the given idiomphrase The class 9 english JEE_Main
Choose the one which best expresses the meaning of class 9 english JEE_Main
What does a hydrometer consist of A A cylindrical stem class 9 physics JEE_Main
A motorcyclist of mass m is to negotiate a curve of class 9 physics JEE_Main
Other Pages
If the length of the pendulum is made 9 times and mass class 11 physics JEE_Main
If temperature of sun is decreased by 1 then the value class 11 physics JEE_Main
Which of the following facts regarding bond order is class 11 chemistry JEE_Main
A rod of length 2m rests on a smooth horizontal floor class 11 physics JEE_Main
Velocity of car at t 0 is u moves with a constant acceleration class 11 physics JEE_Main
Electric field due to uniformly charged sphere class 12 physics JEE_Main