
The amplitude of an oscillating simple pendulum is 10 cm and its time period is 4 s. What is its speed after 1 second when it passes through the equilibrium position?
(A) Zero
(B) \[2.0m/s\]
(C) \[0.3m/s\]
(D) \[0.4m/s\]
Answer
125.4k+ views
Hint: A simple pendulum exhibits a simple harmonic motion. The properties of this particular type of motion can be used to find the mechanics that any oscillating pendulum experiences.
Formula used: $y = a\sin \omega t$ where $y$ is the displacement in a simple harmonic motion, $a$ is the amplitude,$\omega $ is the angular frequency, and $t$ is the time.
Complete step by step answer:
We are aware that an oscillating pendulum undergoes simple harmonic motion (SHM). In this question, we are asked to find the speed of such a pendulum with the following specifications:
Amplitude: $a = 10cm = 0.1m$$[\because 1m = 100cm]$
Time period: $T = 4s$
Time passed since the start of motion $t = 1s$
We must remember to convert the unit into SI. We know that the displacement for SHM is given by:
$y = a\sin \omega t$
To find the velocity, we differentiate the above equation as:
$\dfrac{{dy}}{{dt}} = a\dfrac{d}{{dt}}\left( {\sin \omega t} \right)$ [$a$ comes outside as it is a constant]
\[v = \dfrac{{dy}}{{dt}} = a\omega \left( {\cos \omega t} \right)\]\[[\dfrac{d}{{dt}}\left( {\sin \theta } \right) = \cos \theta ]\]
Notice that this expression has the term $\omega $ which is the angular frequency but in the question we are given with the linear time period. Hence, we convert $T$ as:
$\omega = \dfrac{{2\pi }}{T}$
We put this expression directly in our velocity to make the calculations easier:
$v = a \times \dfrac{{2\pi }}{T} \times \cos \left( {\dfrac{{2\pi }}{T}t} \right)$
Now, we substitute the values and calculate $v$ as:
$v = 0.1 \times \dfrac{{2\pi }}{4} \times \cos \left( {\dfrac{{2\pi }}{4} \times 1} \right)$
We know that
$\cos \left( {\dfrac{{2\pi }}{4}} \right) = \cos \left( {\dfrac{\pi }{2}} \right) = 0$
This makes the value of $v = 0$.
$\therefore $ The speed after 1 second is option A i.e. zero.
Note: The time period for a simple pendulum is defined as the time taken by it to complete one to and fro motion about its mean position. While the angular frequency measures the angular displacement per unit time. Hence, a factor of $2\pi $ needs to be multiplied.
Formula used: $y = a\sin \omega t$ where $y$ is the displacement in a simple harmonic motion, $a$ is the amplitude,$\omega $ is the angular frequency, and $t$ is the time.
Complete step by step answer:
We are aware that an oscillating pendulum undergoes simple harmonic motion (SHM). In this question, we are asked to find the speed of such a pendulum with the following specifications:
Amplitude: $a = 10cm = 0.1m$$[\because 1m = 100cm]$
Time period: $T = 4s$
Time passed since the start of motion $t = 1s$
We must remember to convert the unit into SI. We know that the displacement for SHM is given by:
$y = a\sin \omega t$
To find the velocity, we differentiate the above equation as:
$\dfrac{{dy}}{{dt}} = a\dfrac{d}{{dt}}\left( {\sin \omega t} \right)$ [$a$ comes outside as it is a constant]
\[v = \dfrac{{dy}}{{dt}} = a\omega \left( {\cos \omega t} \right)\]\[[\dfrac{d}{{dt}}\left( {\sin \theta } \right) = \cos \theta ]\]
Notice that this expression has the term $\omega $ which is the angular frequency but in the question we are given with the linear time period. Hence, we convert $T$ as:
$\omega = \dfrac{{2\pi }}{T}$
We put this expression directly in our velocity to make the calculations easier:
$v = a \times \dfrac{{2\pi }}{T} \times \cos \left( {\dfrac{{2\pi }}{T}t} \right)$
Now, we substitute the values and calculate $v$ as:
$v = 0.1 \times \dfrac{{2\pi }}{4} \times \cos \left( {\dfrac{{2\pi }}{4} \times 1} \right)$
We know that
$\cos \left( {\dfrac{{2\pi }}{4}} \right) = \cos \left( {\dfrac{\pi }{2}} \right) = 0$
This makes the value of $v = 0$.
$\therefore $ The speed after 1 second is option A i.e. zero.
Note: The time period for a simple pendulum is defined as the time taken by it to complete one to and fro motion about its mean position. While the angular frequency measures the angular displacement per unit time. Hence, a factor of $2\pi $ needs to be multiplied.
Recently Updated Pages
The ratio of the diameters of two metallic rods of class 11 physics JEE_Main

What is the difference between Conduction and conv class 11 physics JEE_Main

Mark the correct statements about the friction between class 11 physics JEE_Main

Find the acceleration of the wedge towards the right class 11 physics JEE_Main

A standing wave is formed by the superposition of two class 11 physics JEE_Main

Derive an expression for work done by the gas in an class 11 physics JEE_Main

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility & More

JEE Main Exam Marking Scheme: Detailed Breakdown of Marks and Negative Marking

JEE Main 2023 January 24 Shift 2 Question Paper with Answer Keys & Solutions

Learn About Angle Of Deviation In Prism: JEE Main Physics 2025

JEE Main 2025: Conversion of Galvanometer Into Ammeter And Voltmeter in Physics

JEE Main Login 2045: Step-by-Step Instructions and Details

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions for Class 11 Physics Chapter 1 Units and Measurements

NCERT Solutions for Class 11 Physics Chapter 9 Mechanical Properties of Fluids

Units and Measurements Class 11 Notes: CBSE Physics Chapter 1

NCERT Solutions for Class 11 Physics Chapter 2 Motion In A Straight Line

Important Questions for CBSE Class 11 Physics Chapter 1 - Units and Measurement
