
The amount of work done in blowing a soup bubble such that its diameter increases from $d\,to\,D$ is: (surface tension of solution is T)
(A) $4\pi ({D^2} - {d^2})T$
(B) $8\pi ({D^2} - {d^2})T$\[\]
(C) $\pi ({D^2} - {d^2})$
(D) $2\pi ({D^2} - {d^2})T$
Answer
216.3k+ views
Hint: First start to find out what will be the relation between the amount of work done in blowing a soup bubble, its diameter and the surface tension then try to put all the information provided in the question in that relation. Also the D is greater than d as given in the question so put its value accordingly.
Formula used:
$W=T\times \Delta A$
W is the work done, T is the surface tension and $\Delta A$is the change in area
Complete answer:
Start with the formula of the amount of work done in blowing a soap bubble. We know that, Work done is equal to tension in surface energy and surface energy is tension multiply to change in area as follows:
$W = T \times \Delta A$
Where,
W is work done
T is surface tension and
$\Delta A$is the change in area.
Now, in given case of soap bubble, work done will be;
$W = 8\pi T(r_2^2 - r_2^2)$ (equation 1)
From the question, we know that;
${r_1} = \dfrac{d}{2}\,and\,{r_2} = \dfrac{D}{2}$
Putting the value of \[{r_{1\,}}\,and\,{r_2}\] in equation 1, we get;
\[W = 8\pi T\{ (\dfrac{{{D^2}}}{4}) - (\dfrac{{{d^2}}}{4})\} \]
After solving, we get;
\[W = 2\pi T({D^2} - {d^2})\]
Hence the correct answer is Option D
Note: The thing to be kept in mind while talking about the surface tension. Fluids have a feature called surface tension that causes the fluids to tend to minimize or shrink their surface area. The force acting along the length of a fluid's surface is known as surface tension.
Formula used:
$W=T\times \Delta A$
W is the work done, T is the surface tension and $\Delta A$is the change in area
Complete answer:
Start with the formula of the amount of work done in blowing a soap bubble. We know that, Work done is equal to tension in surface energy and surface energy is tension multiply to change in area as follows:
$W = T \times \Delta A$
Where,
W is work done
T is surface tension and
$\Delta A$is the change in area.
Now, in given case of soap bubble, work done will be;
$W = 8\pi T(r_2^2 - r_2^2)$ (equation 1)
From the question, we know that;
${r_1} = \dfrac{d}{2}\,and\,{r_2} = \dfrac{D}{2}$
Putting the value of \[{r_{1\,}}\,and\,{r_2}\] in equation 1, we get;
\[W = 8\pi T\{ (\dfrac{{{D^2}}}{4}) - (\dfrac{{{d^2}}}{4})\} \]
After solving, we get;
\[W = 2\pi T({D^2} - {d^2})\]
Hence the correct answer is Option D
Note: The thing to be kept in mind while talking about the surface tension. Fluids have a feature called surface tension that causes the fluids to tend to minimize or shrink their surface area. The force acting along the length of a fluid's surface is known as surface tension.
Recently Updated Pages
JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

Electricity and Magnetism Explained: Key Concepts & Applications

Chemical Properties of Hydrogen - Important Concepts for JEE Exam Preparation

JEE Energetics Important Concepts and Tips for Exam Preparation

JEE Isolation, Preparation and Properties of Non-metals Important Concepts and Tips for Exam Preparation

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

Understanding Collisions: Types and Examples for Students

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Units And Measurements Class 11 Physics Chapter 1 CBSE Notes - 2025-26

NCERT Solutions For Class 11 Physics Chapter 8 Mechanical Properties Of Solids

Motion in a Straight Line Class 11 Physics Chapter 2 CBSE Notes - 2025-26

NCERT Solutions for Class 11 Physics Chapter 7 Gravitation 2025-26

Understanding Atomic Structure for Beginners

