
The algebraic expression for the statement \[x\] multiplied by itself is ____.
A. \[x\]
B. \[{x^3}\]
C. \[{x^2}\]
D. \[2x\]
Answer
216.6k+ views
Hint: Here, we will first use the multiplication rule of variables, that is, when the variables are the same, then multiplying them together compresses them into a single factor, that is, variable. So we can simply multiply the same bases by merely adding their exponents.
Complete step-by-step answer:
Given that the statement is \[x\].
First, we will multiply the given statement \[x\] by the statement itself, that is, \[x\] multiplied by itself.
\[ \Rightarrow x \times x\]
Since we know that the bases of the above equation are the same, so will multiply the bases by merely adding their exponents.
We will now find the product of the above expression by multiplying the bases and adding the exponential terms.
\[
\Rightarrow {x^{1 + 1}} \\
\Rightarrow {x^2} \\
\]
Thus, we have when \[x\] multiplied by the statement itself is equal to \[{x^2}\].
Therefore, the algebraic expression for the statement \[x\] multiplied by itself is \[{x^2}\].
Hence, the option C is correct.
Note: In solving these types of questions, you should be familiar with the concept of algebraic expression of any statement and the multiplication of variables. Students should also find the product of the given variables carefully for more accuracy. We in a hurry may commit a mistake in multiplication of terms in multiplication so we need to be careful.
Complete step-by-step answer:
Given that the statement is \[x\].
First, we will multiply the given statement \[x\] by the statement itself, that is, \[x\] multiplied by itself.
\[ \Rightarrow x \times x\]
Since we know that the bases of the above equation are the same, so will multiply the bases by merely adding their exponents.
We will now find the product of the above expression by multiplying the bases and adding the exponential terms.
\[
\Rightarrow {x^{1 + 1}} \\
\Rightarrow {x^2} \\
\]
Thus, we have when \[x\] multiplied by the statement itself is equal to \[{x^2}\].
Therefore, the algebraic expression for the statement \[x\] multiplied by itself is \[{x^2}\].
Hence, the option C is correct.
Note: In solving these types of questions, you should be familiar with the concept of algebraic expression of any statement and the multiplication of variables. Students should also find the product of the given variables carefully for more accuracy. We in a hurry may commit a mistake in multiplication of terms in multiplication so we need to be careful.
Recently Updated Pages
JEE Main 2024 (January 24 Shift 1) Question Paper with Solutions [PDF]

Progressive Wave: Meaning, Types & Examples Explained

Temperature Dependence of Resistivity Explained

JEE Main 2024 (January 25 Shift 1) Physics Question Paper with Solutions [PDF]

Difference Between Vectors and Scalars: JEE Main 2026

Salt Hydrolysis IIT JEE | Aсіdіtу and Alkаlіnіtу of Sаlt Sоlutіоns JEE Chemistry

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

JEE Main 2026 Chapter-Wise Syllabus for Physics, Chemistry and Maths – Download PDF

JEE Main Previous Year Question Paper with Answer Keys and Solutions

Understanding Newton’s Laws of Motion

JEE Main Cut Off 2026 - Expected Qualifying Marks and Percentile Category Wise

Marks vs Percentile JEE Mains 2026: Calculate Percentile Marks

Other Pages
NCERT Solutions For Class 9 Maths Chapter 9 Circles

NCERT Solutions for Class 9 Maths Chapter 11 Surface Area and Volume 2025-26

NCERT Solutions For Class 9 Maths Chapter 11 Surface Areas And Volumes

Fuel Cost Calculator – Estimate Your Journey Expenses Easily

NCERT Solutions For Class 9 Maths Chapter 12 Statistics

NCERT Solutions For Class 9 Maths Chapter 10 Heron's Formula

