
The activity of a radioactive sample is measured as ${N_o}$ counts per minute at $t = 0$ and ${N_o}/e$ counts per minute $t = 5{\kern 1pt} $ minutes. The time, (in minute) at which the activity reduces to half its value, is:
A) ${\log _e}\dfrac{2}{5}$
B) $\dfrac{5}{{{{\log }_e}2}}$
C) $5{\log _{10}}2$
D) $5{\log _e}2$
Answer
232.8k+ views
Hint: To solve this question, you need to consider the decay of reactivity as a first-order reaction or process and thus use equations for first order reaction to find the answer to the asked question. The half-life of a first-order reaction is: ${t_{1/2}} = \dfrac{{{{\log }_e}2}}{\lambda }$
Complete step by step answer:
As explained in the hint section of the solution to the asked question, we need to consider the decay of reactivity as a first-order reaction or process and use its equation to first, find the value of $\lambda $ , which is the decay constant of the decaying quantity.
The equation of a first-order reaction is given as:
$N = {N_o}{e^{ - \lambda t}}$
Where, ${N_o}$ is the initial decay rate
$N$ is the decay rate at time $t$
And, $\lambda $ is the decay constant
The question has already told us that the initial decay rate is ${N_o}$
The decay rate after time $t = 5$ min is given as ${N_o}/e$
Substituting in the values, we get:
$\Rightarrow {N_o}/e = {N_o}{e^{ - 5\lambda }}$
After solving, we get:
$
\Rightarrow - 5\lambda = - 1 \\
\Rightarrow \lambda = \dfrac{1}{5} \\
$
Now, we have found the value of the decay constant as: $\lambda = \dfrac{1}{5}$
We can find the half-life for the reaction, which is basically what the question is asking since half-life is the time taken at which the activity of the quantity gets reduced to half.
We already know that for a first-order half-life can be found out using the equation:
${t_{1/2}} = \dfrac{{{{\log }_e}2}}{\lambda }$
Substituting in the value of the decay constant in the equation, we get:
$\Rightarrow {t_{1/2}} = \dfrac{{{{\log }_e}2}}{{\dfrac{1}{5}}}$
$\Rightarrow {t_{1/2}} = 5{\log _e}2$
Hence, We can see that the option (D) is the correct option as the value matches what we found out by solving the question.
Note: Many students do not take such reactions as first-order and stay confused about what and which formulae to use to solve the question. Another way of solving the question would have been to put $N = \dfrac{{{N_o}}}{2}$ and find the value of $t$ using the value of $\lambda = \dfrac{1}{5}$ .
Complete step by step answer:
As explained in the hint section of the solution to the asked question, we need to consider the decay of reactivity as a first-order reaction or process and use its equation to first, find the value of $\lambda $ , which is the decay constant of the decaying quantity.
The equation of a first-order reaction is given as:
$N = {N_o}{e^{ - \lambda t}}$
Where, ${N_o}$ is the initial decay rate
$N$ is the decay rate at time $t$
And, $\lambda $ is the decay constant
The question has already told us that the initial decay rate is ${N_o}$
The decay rate after time $t = 5$ min is given as ${N_o}/e$
Substituting in the values, we get:
$\Rightarrow {N_o}/e = {N_o}{e^{ - 5\lambda }}$
After solving, we get:
$
\Rightarrow - 5\lambda = - 1 \\
\Rightarrow \lambda = \dfrac{1}{5} \\
$
Now, we have found the value of the decay constant as: $\lambda = \dfrac{1}{5}$
We can find the half-life for the reaction, which is basically what the question is asking since half-life is the time taken at which the activity of the quantity gets reduced to half.
We already know that for a first-order half-life can be found out using the equation:
${t_{1/2}} = \dfrac{{{{\log }_e}2}}{\lambda }$
Substituting in the value of the decay constant in the equation, we get:
$\Rightarrow {t_{1/2}} = \dfrac{{{{\log }_e}2}}{{\dfrac{1}{5}}}$
$\Rightarrow {t_{1/2}} = 5{\log _e}2$
Hence, We can see that the option (D) is the correct option as the value matches what we found out by solving the question.
Note: Many students do not take such reactions as first-order and stay confused about what and which formulae to use to solve the question. Another way of solving the question would have been to put $N = \dfrac{{{N_o}}}{2}$ and find the value of $t$ using the value of $\lambda = \dfrac{1}{5}$ .
Recently Updated Pages
Circuit Switching vs Packet Switching: Key Differences Explained

JEE General Topics in Chemistry Important Concepts and Tips

JEE Extractive Metallurgy Important Concepts and Tips for Exam Preparation

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

Electricity and Magnetism Explained: Key Concepts & Applications

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Dual Nature of Radiation and Matter Class 12 Physics Chapter 11 CBSE Notes - 2025-26

Understanding Uniform Acceleration in Physics

Understanding the Electric Field of a Uniformly Charged Ring

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Derivation of Equation of Trajectory Explained for Students

