
The acceleration of a train travelling with speed of 400 m/s as it goes round a curve of radius 160m, is
A. \[1{\rm{ km/}}{{\rm{s}}^2}\]
B. \[100{\rm{ m/}}{{\rm{s}}^2}\]
C. \[10{\rm{ m/}}{{\rm{s}}^2}\]
D. \[1{\rm{ m/}}{{\rm{s}}^2}\]
Answer
218.4k+ views
Hint:The centripetal acceleration is always directed radially towards the center of the circle with a magnitude which is equal to the square of the speed or velocity of the body along the curve divided by the total distance from the center of the circle to the moving body.
Formula used:
When an object is moving in a circular motion then its acceleration can be measured by using the following equation-
\[a = \dfrac{{{v^2}}}{r}\]
Where \[a\] is the centripetal acceleration, v is the velocity and r is the radius.
Complete step by step solution:
Given Speed of a train, \[v = 400{\rm{ m/s}}\]
Radius, \[r = 160{\rm{ m}}\]
As we know that centripetal acceleration is,
\[a = \dfrac{{{v^2}}}{r}\]
After substituting the values, we get
\[a = \dfrac{{{{(400)}^2}}}{{160}} \\
\Rightarrow a= {10^3}{\rm{ m/}}{{\rm{s}}^2} \\
\therefore a= 1\,{\rm{ km/}}{{\rm{s}}^2}\]
Therefore, the acceleration of a train travelling will be \[1{\rm{ km/}}{{\rm{s}}^2}\].
Hence option A is the correct answer.
Note: The centripetal acceleration is defined as the acceleration of a body travelling in a circular path. As velocity is a vector quantity it has both magnitude and direction. When a body travels on a circular path then its direction constantly changes and hence its velocity changes and produces an acceleration. The acceleration is always directed radially toward the centre of the circle. The centripetal acceleration has a magnitude equal to the square of the speed of a body along the curve divided by the distance from the centre of the circle to the moving body. The unit of centripetal acceleration is metre per second square.
Formula used:
When an object is moving in a circular motion then its acceleration can be measured by using the following equation-
\[a = \dfrac{{{v^2}}}{r}\]
Where \[a\] is the centripetal acceleration, v is the velocity and r is the radius.
Complete step by step solution:
Given Speed of a train, \[v = 400{\rm{ m/s}}\]
Radius, \[r = 160{\rm{ m}}\]
As we know that centripetal acceleration is,
\[a = \dfrac{{{v^2}}}{r}\]
After substituting the values, we get
\[a = \dfrac{{{{(400)}^2}}}{{160}} \\
\Rightarrow a= {10^3}{\rm{ m/}}{{\rm{s}}^2} \\
\therefore a= 1\,{\rm{ km/}}{{\rm{s}}^2}\]
Therefore, the acceleration of a train travelling will be \[1{\rm{ km/}}{{\rm{s}}^2}\].
Hence option A is the correct answer.
Note: The centripetal acceleration is defined as the acceleration of a body travelling in a circular path. As velocity is a vector quantity it has both magnitude and direction. When a body travels on a circular path then its direction constantly changes and hence its velocity changes and produces an acceleration. The acceleration is always directed radially toward the centre of the circle. The centripetal acceleration has a magnitude equal to the square of the speed of a body along the curve divided by the distance from the centre of the circle to the moving body. The unit of centripetal acceleration is metre per second square.
Recently Updated Pages
Two discs which are rotating about their respective class 11 physics JEE_Main

A ladder rests against a frictionless vertical wall class 11 physics JEE_Main

Two simple pendulums of lengths 1 m and 16 m respectively class 11 physics JEE_Main

The slopes of isothermal and adiabatic curves are related class 11 physics JEE_Main

A trolly falling freely on an inclined plane as shown class 11 physics JEE_Main

The masses M1 and M2M2 M1 are released from rest Using class 11 physics JEE_Main

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

Understanding Collisions: Types and Examples for Students

Understanding Atomic Structure for Beginners

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Units And Measurements Class 11 Physics Chapter 1 CBSE Notes - 2025-26

NCERT Solutions For Class 11 Physics Chapter 8 Mechanical Properties Of Solids

Motion in a Straight Line Class 11 Physics Chapter 2 CBSE Notes - 2025-26

NCERT Solutions for Class 11 Physics Chapter 7 Gravitation 2025-26

How to Convert a Galvanometer into an Ammeter or Voltmeter

