
The acceleration due to gravity g and density of the earth P are related by which of the following relations? (Here G is the gravitational constant and R is the radius of the earth).
(A) \[p = \dfrac{{4\pi }}{{3GRd}}\]
(B) \[p = \dfrac{{3g}}{{4\pi GR}}\]
(C) \[p = \dfrac{{3G}}{{4\pi GR}}\]
(D) \[p = \dfrac{{4\pi GR}}{{3G}}\]
Answer
123.9k+ views
Hint Write down the equation for acceleration due to gravity. Rearrange the equation and find the formula for mass. Then calculate the volume of earth. Finally substitute, mass and volume in the equation which states that the ratio of mass to volume gives us density.
Complete step-by-step solution
Acceleration due to gravity on earth is given as,
\[g = \dfrac{{GM}}{{{R^2}}}\,\,\, \ldots (1)\]
Where, g: Acceleration due to gravity
G: Gravitational constant
M: Mass of earth
R: Radius of earth
Now we know, density is given as,
\[density = \dfrac{{mass}}{{volume}}\]
\[\therefore p = \dfrac{M}{V}\,\,\, \ldots (2)\]
Volume of Earth is
\[V = \dfrac{4}{3}\pi {R^3}\,\, \ldots (3)\]
Now, rearranging equation.(1) gives us,
\[{\text{M = }}\dfrac{{{\text{g}}{{\text{R}}^{\text{2}}}}}{{\text{G}}}\,\,\,{\ldots (4)}\]
By substituting equation.(3) and equation.(4) in equation.(2) we get,
$p=\dfrac{{{\text{g}}{{\text{R}}^{\text{2}}}}}{ \dfrac{4}{3}\pi {R^3}}$
\[\therefore {\text{p = }}\dfrac{{{\text{3g}}}}{{{\text{4}\pi \text{GR}}}}\]
So, the relation between density and acceleration due to gravity is given as \[p = \dfrac{{3g}}{{4\pi GR}}\].
Acceleration due to gravity is proportional to mean density of earth and its radius.
Hence, the correct answer is option (B).
Additional Information
Equation of gravitational constant and acceleration due to gravity can be calculated as shown below:
Suppose, a body of mass m is placed on the surface of earth and assumes the shape of the earth to be round. If mass of the earth is M and radius of earth is R, then by Newton’s law of gravitation we get,
\[{\text{F = G}}\dfrac{{{\text{Mm}}}}{{{{\text{R}}^{\text{2}}}}}\,\,{ \ldots (1)}\]
Now, from Newton’s Second law of motion,
\[{\text{F = mg}}\,\,{ \ldots (2)}\]
From equation.(1) and equation.(2) we get,
\[{\text{mg = G}}\dfrac{{{\text{Mm}}}}{{{{\text{R}}^{\text{2}}}}}\]
\[\therefore {\text{g = }}\dfrac{{{\text{GM}}}}{{{{\text{R}}^{\text{2}}}}}\,\,\]
Note This expression can also be used at and within the earth at distance R from the centre of the earth. Generally, we use P (rho) as the symbol for density but in this question it is denoted by symbol p. So don’t get confused by the initialization. Solve the question using the initials mentioned in the question.
Complete step-by-step solution
Acceleration due to gravity on earth is given as,
\[g = \dfrac{{GM}}{{{R^2}}}\,\,\, \ldots (1)\]
Where, g: Acceleration due to gravity
G: Gravitational constant
M: Mass of earth
R: Radius of earth
Now we know, density is given as,
\[density = \dfrac{{mass}}{{volume}}\]
\[\therefore p = \dfrac{M}{V}\,\,\, \ldots (2)\]
Volume of Earth is
\[V = \dfrac{4}{3}\pi {R^3}\,\, \ldots (3)\]
Now, rearranging equation.(1) gives us,
\[{\text{M = }}\dfrac{{{\text{g}}{{\text{R}}^{\text{2}}}}}{{\text{G}}}\,\,\,{\ldots (4)}\]
By substituting equation.(3) and equation.(4) in equation.(2) we get,
$p=\dfrac{{{\text{g}}{{\text{R}}^{\text{2}}}}}{ \dfrac{4}{3}\pi {R^3}}$
\[\therefore {\text{p = }}\dfrac{{{\text{3g}}}}{{{\text{4}\pi \text{GR}}}}\]
So, the relation between density and acceleration due to gravity is given as \[p = \dfrac{{3g}}{{4\pi GR}}\].
Acceleration due to gravity is proportional to mean density of earth and its radius.
Hence, the correct answer is option (B).
Additional Information
Equation of gravitational constant and acceleration due to gravity can be calculated as shown below:
Suppose, a body of mass m is placed on the surface of earth and assumes the shape of the earth to be round. If mass of the earth is M and radius of earth is R, then by Newton’s law of gravitation we get,
\[{\text{F = G}}\dfrac{{{\text{Mm}}}}{{{{\text{R}}^{\text{2}}}}}\,\,{ \ldots (1)}\]
Now, from Newton’s Second law of motion,
\[{\text{F = mg}}\,\,{ \ldots (2)}\]
From equation.(1) and equation.(2) we get,
\[{\text{mg = G}}\dfrac{{{\text{Mm}}}}{{{{\text{R}}^{\text{2}}}}}\]
\[\therefore {\text{g = }}\dfrac{{{\text{GM}}}}{{{{\text{R}}^{\text{2}}}}}\,\,\]
Note This expression can also be used at and within the earth at distance R from the centre of the earth. Generally, we use P (rho) as the symbol for density but in this question it is denoted by symbol p. So don’t get confused by the initialization. Solve the question using the initials mentioned in the question.
Recently Updated Pages
Difference Between Circuit Switching and Packet Switching

Difference Between Mass and Weight

JEE Main Participating Colleges 2024 - A Complete List of Top Colleges

JEE Main Maths Paper Pattern 2025 – Marking, Sections & Tips

Sign up for JEE Main 2025 Live Classes - Vedantu

JEE Main 2025 Helpline Numbers - Center Contact, Phone Number, Address

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility & More

Class 11 JEE Main Physics Mock Test 2025

JEE Main Exam Marking Scheme: Detailed Breakdown of Marks and Negative Marking

JEE Main 2023 January 24 Shift 2 Question Paper with Answer Keys & Solutions

Learn About Angle Of Deviation In Prism: JEE Main Physics 2025

JEE Main 2025: Conversion of Galvanometer Into Ammeter And Voltmeter in Physics

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions for Class 11 Physics Chapter 1 Units and Measurements

NCERT Solutions for Class 11 Physics Chapter 9 Mechanical Properties of Fluids

Units and Measurements Class 11 Notes: CBSE Physics Chapter 1

JEE Advanced 2025: Dates, Registration, Syllabus, Eligibility Criteria and More

NCERT Solutions for Class 11 Physics Chapter 2 Motion In A Straight Line
