
Suppose universal gravitational constant starts to decrease, then
(This question may have multiple correct questions)
$(a)$ length of the day on the earth will increase
$(b)$length of the year will increase
$(c)$ the earth will follow a spiral path of decreasing radius
$(d)$ Kinetic energy of the earth will decrease
Answer
220.8k+ views
Hint: In this question use the direct formula that is $F = G\dfrac{{{m_1}{m_2}}}{{{r^2}}}$, to predict the effect of decrease of G onto the force acting between the earth and the sun. We will observe that on decreasing G the earth will no longer be able to circulate onto a circular orbit around the sun, eventually it becomes spiral. This will help to approach the solution.
Complete step-by-step solution -
As we know that the gravitational force between the two bodies is working as, directly proportional to the product of their individual masses and inversely proportional to the square of the distance between them,
$ \Rightarrow F = G\dfrac{{{m_1}{m_2}}}{{{r^2}}}$N.................... (1)
Where G = universal gravitational constant = 6.674$ \times {10^{ - 11}}$N-m2/Kg2
Now let the first body be earth and the second body be Sun.
So ${m_1}$ is the mass of the earth and ${m_2}$ is the mass of the sun.
And (r) is the distance between them.
Now according to the question if the value of G starts decreasing.
Then from equation (1) the gravitational force between the sun and the earth also starts decreasing.
Therefore earth will follow a spiral path of increasing radius, only then the gravitational force starts decreasing as mass of the sun and the earth remains the same.
So (r) increased, therefore the time taken by the earth to revolve around the sun also increased.
As we know, 1 complete revolution around the sun = 1 year = 365days, when G is constant.
Now when G is decreased, the total time of the revolution around the sun is increased so the length of the year is also increased.
But the rotational motion of the earth on its own axis remains unchanged so the period of the earth’s rotation remains unchanged hence the length of the day on the earth will remain the same.
Now due to decreased G, r will increase so the potential energy (P.E) of the earth also starts increasing.
As the total energy remains the same which is the sum of kinetic energy and potential energy, so if the potential energy of the earth is increased therefore kinetic energy will be decreased so that the total energy remains constant.
Hence option (B) and (D) are the correct answer.
Note – There is often a confusion between g and G. g is the acceleration due to gravity whose value is 9.8 at the surface of the earth however G is the proportionality constant and has a default value of $6.674 \times {10^{11}}mK{g^{ - 1}}{s^{ - 2}}$ It is advised to remember the direct formula for the force of gravitation between two masses that is ${F^1}_g = G\dfrac{{{m_1}{m_2}}}{{{d^2}}}$ as it is very helpful while dealing with forces between two bodies and has involvement of G in it as well.
Complete step-by-step solution -
As we know that the gravitational force between the two bodies is working as, directly proportional to the product of their individual masses and inversely proportional to the square of the distance between them,
$ \Rightarrow F = G\dfrac{{{m_1}{m_2}}}{{{r^2}}}$N.................... (1)
Where G = universal gravitational constant = 6.674$ \times {10^{ - 11}}$N-m2/Kg2
Now let the first body be earth and the second body be Sun.
So ${m_1}$ is the mass of the earth and ${m_2}$ is the mass of the sun.
And (r) is the distance between them.
Now according to the question if the value of G starts decreasing.
Then from equation (1) the gravitational force between the sun and the earth also starts decreasing.
Therefore earth will follow a spiral path of increasing radius, only then the gravitational force starts decreasing as mass of the sun and the earth remains the same.
So (r) increased, therefore the time taken by the earth to revolve around the sun also increased.
As we know, 1 complete revolution around the sun = 1 year = 365days, when G is constant.
Now when G is decreased, the total time of the revolution around the sun is increased so the length of the year is also increased.
But the rotational motion of the earth on its own axis remains unchanged so the period of the earth’s rotation remains unchanged hence the length of the day on the earth will remain the same.
Now due to decreased G, r will increase so the potential energy (P.E) of the earth also starts increasing.
As the total energy remains the same which is the sum of kinetic energy and potential energy, so if the potential energy of the earth is increased therefore kinetic energy will be decreased so that the total energy remains constant.
Hence option (B) and (D) are the correct answer.
Note – There is often a confusion between g and G. g is the acceleration due to gravity whose value is 9.8 at the surface of the earth however G is the proportionality constant and has a default value of $6.674 \times {10^{11}}mK{g^{ - 1}}{s^{ - 2}}$ It is advised to remember the direct formula for the force of gravitation between two masses that is ${F^1}_g = G\dfrac{{{m_1}{m_2}}}{{{d^2}}}$ as it is very helpful while dealing with forces between two bodies and has involvement of G in it as well.
Recently Updated Pages
Two discs which are rotating about their respective class 11 physics JEE_Main

A ladder rests against a frictionless vertical wall class 11 physics JEE_Main

Two simple pendulums of lengths 1 m and 16 m respectively class 11 physics JEE_Main

The slopes of isothermal and adiabatic curves are related class 11 physics JEE_Main

A trolly falling freely on an inclined plane as shown class 11 physics JEE_Main

The masses M1 and M2M2 M1 are released from rest Using class 11 physics JEE_Main

Trending doubts
Understanding Uniform Acceleration in Physics

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Degree of Dissociation: Meaning, Formula, Calculation & Uses

Understanding Electromagnetic Waves and Their Importance

Understanding Collisions: Types and Examples for Students

Understanding Entropy Changes in Different Processes

Other Pages
NCERT Solutions For Class 11 Physics Chapter 4 Laws Of Motion

Common Ion Effect: Concept, Applications, and Problem-Solving

What Are Elastic Collisions in One Dimension?

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Understanding Charging and Discharging of Capacitors

Free Radical Substitution and Its Stepwise Mechanism

