Answer
Verified
85.2k+ views
Hint: In this question use the direct formula that is $F = G\dfrac{{{m_1}{m_2}}}{{{r^2}}}$, to predict the effect of decrease of G onto the force acting between the earth and the sun. We will observe that on decreasing G the earth will no longer be able to circulate onto a circular orbit around the sun, eventually it becomes spiral. This will help to approach the solution.
Complete step-by-step solution -
As we know that the gravitational force between the two bodies is working as, directly proportional to the product of their individual masses and inversely proportional to the square of the distance between them,
$ \Rightarrow F = G\dfrac{{{m_1}{m_2}}}{{{r^2}}}$N.................... (1)
Where G = universal gravitational constant = 6.674$ \times {10^{ - 11}}$N-m2/Kg2
Now let the first body be earth and the second body be Sun.
So ${m_1}$ is the mass of the earth and ${m_2}$ is the mass of the sun.
And (r) is the distance between them.
Now according to the question if the value of G starts decreasing.
Then from equation (1) the gravitational force between the sun and the earth also starts decreasing.
Therefore earth will follow a spiral path of increasing radius, only then the gravitational force starts decreasing as mass of the sun and the earth remains the same.
So (r) increased, therefore the time taken by the earth to revolve around the sun also increased.
As we know, 1 complete revolution around the sun = 1 year = 365days, when G is constant.
Now when G is decreased, the total time of the revolution around the sun is increased so the length of the year is also increased.
But the rotational motion of the earth on its own axis remains unchanged so the period of the earth’s rotation remains unchanged hence the length of the day on the earth will remain the same.
Now due to decreased G, r will increase so the potential energy (P.E) of the earth also starts increasing.
As the total energy remains the same which is the sum of kinetic energy and potential energy, so if the potential energy of the earth is increased therefore kinetic energy will be decreased so that the total energy remains constant.
Hence option (B) and (D) are the correct answer.
Note – There is often a confusion between g and G. g is the acceleration due to gravity whose value is 9.8 at the surface of the earth however G is the proportionality constant and has a default value of $6.674 \times {10^{11}}mK{g^{ - 1}}{s^{ - 2}}$ It is advised to remember the direct formula for the force of gravitation between two masses that is ${F^1}_g = G\dfrac{{{m_1}{m_2}}}{{{d^2}}}$ as it is very helpful while dealing with forces between two bodies and has involvement of G in it as well.
Complete step-by-step solution -
As we know that the gravitational force between the two bodies is working as, directly proportional to the product of their individual masses and inversely proportional to the square of the distance between them,
$ \Rightarrow F = G\dfrac{{{m_1}{m_2}}}{{{r^2}}}$N.................... (1)
Where G = universal gravitational constant = 6.674$ \times {10^{ - 11}}$N-m2/Kg2
Now let the first body be earth and the second body be Sun.
So ${m_1}$ is the mass of the earth and ${m_2}$ is the mass of the sun.
And (r) is the distance between them.
Now according to the question if the value of G starts decreasing.
Then from equation (1) the gravitational force between the sun and the earth also starts decreasing.
Therefore earth will follow a spiral path of increasing radius, only then the gravitational force starts decreasing as mass of the sun and the earth remains the same.
So (r) increased, therefore the time taken by the earth to revolve around the sun also increased.
As we know, 1 complete revolution around the sun = 1 year = 365days, when G is constant.
Now when G is decreased, the total time of the revolution around the sun is increased so the length of the year is also increased.
But the rotational motion of the earth on its own axis remains unchanged so the period of the earth’s rotation remains unchanged hence the length of the day on the earth will remain the same.
Now due to decreased G, r will increase so the potential energy (P.E) of the earth also starts increasing.
As the total energy remains the same which is the sum of kinetic energy and potential energy, so if the potential energy of the earth is increased therefore kinetic energy will be decreased so that the total energy remains constant.
Hence option (B) and (D) are the correct answer.
Note – There is often a confusion between g and G. g is the acceleration due to gravity whose value is 9.8 at the surface of the earth however G is the proportionality constant and has a default value of $6.674 \times {10^{11}}mK{g^{ - 1}}{s^{ - 2}}$ It is advised to remember the direct formula for the force of gravitation between two masses that is ${F^1}_g = G\dfrac{{{m_1}{m_2}}}{{{d^2}}}$ as it is very helpful while dealing with forces between two bodies and has involvement of G in it as well.
Recently Updated Pages
Name the scale on which the destructive energy of an class 11 physics JEE_Main
Write an article on the need and importance of sports class 10 english JEE_Main
Choose the exact meaning of the given idiomphrase The class 9 english JEE_Main
Choose the one which best expresses the meaning of class 9 english JEE_Main
What does a hydrometer consist of A A cylindrical stem class 9 physics JEE_Main
A motorcyclist of mass m is to negotiate a curve of class 9 physics JEE_Main
Other Pages
Electric field due to uniformly charged sphere class 12 physics JEE_Main
The reaction of Zinc with dilute and concentrated nitric class 12 chemistry JEE_Main
Two blocks are in contact on a frictionless table One class 11 physics JEE_Main
If a gas expands at constant temperature it indicates class 11 chemistry JEE_Main
If a wire of resistance R is stretched to double of class 12 physics JEE_Main
A vector of 10N makes an angle of 30circ with positive class 11 physics JEE_Main