
How many straight lines are there that are equally aligned to three-dimensional coordinate axes?
Answer
161.4k+ views
Hint:Direction cosines of a vector are the ones that determine its direction in space. They are the cosines of the angle that the vector makes with the three-dimensional coordinate axes, respectively. If $(l,m,n)$ are the direction cosines of a line in space, then ${l^2} + {m^2} + {n^2} = 1$ .
Complete step by step Solution:
Let $\alpha ,\beta ,\gamma $ be the angles that a straight line makes with the three-dimensional coordinate axes, respectively.
Then, the direction cosines of the line are:
$l = \cos \alpha $ ,
$m = \cos \beta $ , and
$n = \cos \gamma $
Now, as $(l,m,n)$ are the direction cosines of the line, therefore,
${l^2} + {m^2} + {n^2} = 1$
Substituting their values,
${\cos ^2}\alpha + {\cos ^2}\beta + {\cos ^2}\gamma = 1$ … (1)
As it is given that the line is equally aligned with all the three-dimensional coordinate axes, hence,
$\alpha = \beta = \gamma $
This also implies that $\cos \alpha = \cos \beta = \cos \gamma $ .
Substituting this in equation (1),
$3{\cos ^2}\alpha = 1$
Simplifying further and taking the square root, we have:
$\cos \alpha = \pm \dfrac{1}{{\sqrt 3 }}$
From the above equation, we can induce all the combinations of the direction cosines possible, hence, giving us all the lines possible.
Thus, all the combinations are:
$\left( {\dfrac{1}{{\sqrt 3 }},\dfrac{1}{{\sqrt 3 }},\dfrac{1}{{\sqrt 3 }}} \right),\left( {\dfrac{1}{{\sqrt 3 }},\dfrac{1}{{\sqrt 3 }}, - \dfrac{1}{{\sqrt 3 }}} \right),\left( {\dfrac{1}{{\sqrt 3 }}, - \dfrac{1}{{\sqrt 3 }},\dfrac{1}{{\sqrt 3 }}} \right),\left( { - \dfrac{1}{{\sqrt 3 }},\dfrac{1}{{\sqrt 3 }},\dfrac{1}{{\sqrt 3 }}} \right)$
Thus, there are a total of four straight lines that can be equally aligned with all the three-dimensional axes.
Note:Using permutations, the possible number of combinations that can be formed is 8. However, in the above question, it is important to note that half of the combinations, of the direction ratios, obtained will result in the formation of the same line.
Complete step by step Solution:
Let $\alpha ,\beta ,\gamma $ be the angles that a straight line makes with the three-dimensional coordinate axes, respectively.
Then, the direction cosines of the line are:
$l = \cos \alpha $ ,
$m = \cos \beta $ , and
$n = \cos \gamma $
Now, as $(l,m,n)$ are the direction cosines of the line, therefore,
${l^2} + {m^2} + {n^2} = 1$
Substituting their values,
${\cos ^2}\alpha + {\cos ^2}\beta + {\cos ^2}\gamma = 1$ … (1)
As it is given that the line is equally aligned with all the three-dimensional coordinate axes, hence,
$\alpha = \beta = \gamma $
This also implies that $\cos \alpha = \cos \beta = \cos \gamma $ .
Substituting this in equation (1),
$3{\cos ^2}\alpha = 1$
Simplifying further and taking the square root, we have:
$\cos \alpha = \pm \dfrac{1}{{\sqrt 3 }}$
From the above equation, we can induce all the combinations of the direction cosines possible, hence, giving us all the lines possible.
Thus, all the combinations are:
$\left( {\dfrac{1}{{\sqrt 3 }},\dfrac{1}{{\sqrt 3 }},\dfrac{1}{{\sqrt 3 }}} \right),\left( {\dfrac{1}{{\sqrt 3 }},\dfrac{1}{{\sqrt 3 }}, - \dfrac{1}{{\sqrt 3 }}} \right),\left( {\dfrac{1}{{\sqrt 3 }}, - \dfrac{1}{{\sqrt 3 }},\dfrac{1}{{\sqrt 3 }}} \right),\left( { - \dfrac{1}{{\sqrt 3 }},\dfrac{1}{{\sqrt 3 }},\dfrac{1}{{\sqrt 3 }}} \right)$
Thus, there are a total of four straight lines that can be equally aligned with all the three-dimensional axes.
Note:Using permutations, the possible number of combinations that can be formed is 8. However, in the above question, it is important to note that half of the combinations, of the direction ratios, obtained will result in the formation of the same line.
Recently Updated Pages
If tan 1y tan 1x + tan 1left frac2x1 x2 right where x frac1sqrt 3 Then the value of y is

Geometry of Complex Numbers – Topics, Reception, Audience and Related Readings

JEE Main 2021 July 25 Shift 1 Question Paper with Answer Key

JEE Main 2021 July 22 Shift 2 Question Paper with Answer Key

JEE Electricity and Magnetism Important Concepts and Tips for Exam Preparation

JEE Energetics Important Concepts and Tips for Exam Preparation

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Displacement-Time Graph and Velocity-Time Graph for JEE

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

JoSAA JEE Main & Advanced 2025 Counselling: Registration Dates, Documents, Fees, Seat Allotment & Cut‑offs

NIT Cutoff Percentile for 2025

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

JEE Advanced 2025: Dates, Registration, Syllabus, Eligibility Criteria and More

Degree of Dissociation and Its Formula With Solved Example for JEE

Free Radical Substitution Mechanism of Alkanes for JEE Main 2025

JEE Advanced 2025 Notes
