
What is the stopping potential when the metal with work function \[0.6eV\] is illuminated with the light of \[2\,eV\].
A. 2.6 V
B. 3.6 V
C. 0.8 V
D. 1.4 V
Answer
163.8k+ views
Hint: Stopping potential is the potential required to bring the electron to rest. Also, we can say that stopping potential is defined as the minimum negative voltage applied to the anode to stop the photocurrent. The maximum kinetic energy of the electrons equals the stopping voltage when measured in electron volt. Here we find the stopping potential by using the values of the energy of the incident photon and the work function. By using Einstein’s equation, we can solve this problem.
Formula used:
Kinetic energy of photoelectrons is given as:
\[KE = E - \phi \]
Where E is the energy and \[\phi \] is the work function.
Also, \[KE = e{V_0}\]
Where, \[{V_0}\] is the stopping potential.
1eV=\[1.6 \times {10^{ - 19}}J\]
Complete step by step solution:
Given Energy of the incident photon, \[E = 2eV\]
Work function, \[\phi = 0.6eV\]
By Einstein’s equation,
\[KE = E - \phi \]
Also, we can write,
\[E = \phi + KE\]
By using \[KE = e{V_0}\], we have
\[\begin{array}{l}E = \phi + e{V_0}\\ \Rightarrow {\rm{e}}{{\rm{V}}_0}{\rm{ = E - }}\phi \\ \Rightarrow {V_0} = \dfrac{{E - \phi }}{e}\end{array}\]
Substituting the values, we get
\[\begin{array}{l}{V_0} = \dfrac{{2eV - 0.6eV}}{e}\\ \therefore {V_0}{\rm{ = 1}}{\rm{.4V}}\end{array}\]
Therefore, the stopping potential will be 1.4V.
Hence option D is the correct answer
Additional Information: Stopping potential is the potential required to stop the photoelectric effect. Stopping potential is defined as the potential required for stopping the ejecting of an electron from a metal surface when the incident light energy is greater than the work potential of the metal. The intensity of incident radiation stopping potential does not depend. On increasing intensity, the value of saturated current increases, whereas the stopping potential remains unchanged. The stopping voltage can be used to determine the kinetic energy that the electrons have as they are ejected from the metal surface.
Note: In order to emit an electron from the surface of the metal, the energy of the electron must be greater than the work function. The work function is dependent on the nature of the metal and the conditions of the metal surface. It can be measured by the unit of energy known as electron volt (eV).
Formula used:
Kinetic energy of photoelectrons is given as:
\[KE = E - \phi \]
Where E is the energy and \[\phi \] is the work function.
Also, \[KE = e{V_0}\]
Where, \[{V_0}\] is the stopping potential.
1eV=\[1.6 \times {10^{ - 19}}J\]
Complete step by step solution:
Given Energy of the incident photon, \[E = 2eV\]
Work function, \[\phi = 0.6eV\]
By Einstein’s equation,
\[KE = E - \phi \]
Also, we can write,
\[E = \phi + KE\]
By using \[KE = e{V_0}\], we have
\[\begin{array}{l}E = \phi + e{V_0}\\ \Rightarrow {\rm{e}}{{\rm{V}}_0}{\rm{ = E - }}\phi \\ \Rightarrow {V_0} = \dfrac{{E - \phi }}{e}\end{array}\]
Substituting the values, we get
\[\begin{array}{l}{V_0} = \dfrac{{2eV - 0.6eV}}{e}\\ \therefore {V_0}{\rm{ = 1}}{\rm{.4V}}\end{array}\]
Therefore, the stopping potential will be 1.4V.
Hence option D is the correct answer
Additional Information: Stopping potential is the potential required to stop the photoelectric effect. Stopping potential is defined as the potential required for stopping the ejecting of an electron from a metal surface when the incident light energy is greater than the work potential of the metal. The intensity of incident radiation stopping potential does not depend. On increasing intensity, the value of saturated current increases, whereas the stopping potential remains unchanged. The stopping voltage can be used to determine the kinetic energy that the electrons have as they are ejected from the metal surface.
Note: In order to emit an electron from the surface of the metal, the energy of the electron must be greater than the work function. The work function is dependent on the nature of the metal and the conditions of the metal surface. It can be measured by the unit of energy known as electron volt (eV).
Recently Updated Pages
Uniform Acceleration - Definition, Equation, Examples, and FAQs

JEE Main 2021 July 25 Shift 1 Question Paper with Answer Key

JEE Main 2021 July 22 Shift 2 Question Paper with Answer Key

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

JEE Electricity and Magnetism Important Concepts and Tips for Exam Preparation

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

Atomic Structure - Electrons, Protons, Neutrons and Atomic Models

Displacement-Time Graph and Velocity-Time Graph for JEE

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Electric field due to uniformly charged sphere class 12 physics JEE_Main

Learn About Angle Of Deviation In Prism: JEE Main Physics 2025

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Degree of Dissociation and Its Formula With Solved Example for JEE

Wheatstone Bridge for JEE Main Physics 2025

Charging and Discharging of Capacitor
