
Starting from rest a car moves with uniform acceleration and attains a velocity of $90{\text{km/h}}$ in \[25\;{\text{s}}\]. It then moves with uniform speed for $30\;{\text{s}}$ and is then brought to rest in \[20\;{\text{s}}\] under uniform retardation. Find total distance travelled using velocity - time graph.
Answer
126.6k+ views
Hint: In this question, the concept of the velocity time graph will be used, that is the area under the curve of the graph represents the total distance travelled. Plot the velocity-time graph according to the question given. Find the area of the graph which will give the result for total distance travelled using velocity - time graph.
Complete step by step answer:
Firstly, to solve this question, we have to convert the velocity given for the car in ${\text{m/s}}$format.
So,
$ \Rightarrow 90{\text{km/h}} = 90 \times \dfrac{{1000}}{{360}}{\text{m/s}} = 25{\text{m/s}}$
Now, we plot the velocity-time graph (or the v-t graph) for the question, as shown below: -

The above diagram represents the velocity time graph (v-t graph) for the question.
As we have given in the question, velocity of the car is plotted in the $y$-axis and time is plotted in the $x$ -axis.
In case of $x$ -axis (that is for plotting time): The car moves with uniform acceleration and attains a velocity of $25{\text{m/s}}$ in\[25{\text{ }}s\], so the first point is given as \[25{\text{ }}s\]. It then moves with uniform speed for$30s$, so the next point is given as $55\;{\text{s}}$ $(25 + 30 = 55s)$. Then the car is brought to rest in $20\;{\text{s}}$, so the last point is given as $75\;{\text{s}}$ $\left( {25 + 30 + 20 = 75\;{\text{s}}} \right)$.
Now, according to the formula for displacement, we have to calculate the Area under the velocity-time graph. (As Displacement= Area under velocity-time graph)
So we can clearly see in the figure that the figure forming in the velocity-time graph is a Trapezoid.
So,
\[ \Rightarrow {\text{Area of Trapezoid}} = \dfrac{1}{2} \times \left( {{\text{Sum of Parallel Sides}}} \right) \times \left( {{\text{Distance between them}}} \right)\]
Here, Parallel sides (according to the v-t graph) are \[AB\]and \[CD\]. And the distance between them is $25{\text{m/s}}$.
\[ \Rightarrow {\text{Area of Trapezoid}} = \dfrac{1}{2} \times \left( {AB + CD} \right) \times 25\]
Now, we substitute the given values as,
\[ \Rightarrow {\text{Area of Trapezoid}} = \dfrac{1}{2} \times (30 + 75) \times 25\]
After simplification we get,
\[ \Rightarrow {\text{Area of Trapezoid}} = 1312.5\;{\text{m}}\]
Hence, the total distance travelled using velocity-time graph is $1312.5\;{\text{m}}$.
Note: Mistakes occur while plotting the velocity-time graph. In $x$-axis, time plotted should be taken cautiously as the timestamps are summed up continuously and plotted. Conversion of units is done for the ease of calculation.
Complete step by step answer:
Firstly, to solve this question, we have to convert the velocity given for the car in ${\text{m/s}}$format.
So,
$ \Rightarrow 90{\text{km/h}} = 90 \times \dfrac{{1000}}{{360}}{\text{m/s}} = 25{\text{m/s}}$
Now, we plot the velocity-time graph (or the v-t graph) for the question, as shown below: -

The above diagram represents the velocity time graph (v-t graph) for the question.
As we have given in the question, velocity of the car is plotted in the $y$-axis and time is plotted in the $x$ -axis.
In case of $x$ -axis (that is for plotting time): The car moves with uniform acceleration and attains a velocity of $25{\text{m/s}}$ in\[25{\text{ }}s\], so the first point is given as \[25{\text{ }}s\]. It then moves with uniform speed for$30s$, so the next point is given as $55\;{\text{s}}$ $(25 + 30 = 55s)$. Then the car is brought to rest in $20\;{\text{s}}$, so the last point is given as $75\;{\text{s}}$ $\left( {25 + 30 + 20 = 75\;{\text{s}}} \right)$.
Now, according to the formula for displacement, we have to calculate the Area under the velocity-time graph. (As Displacement= Area under velocity-time graph)
So we can clearly see in the figure that the figure forming in the velocity-time graph is a Trapezoid.
So,
\[ \Rightarrow {\text{Area of Trapezoid}} = \dfrac{1}{2} \times \left( {{\text{Sum of Parallel Sides}}} \right) \times \left( {{\text{Distance between them}}} \right)\]
Here, Parallel sides (according to the v-t graph) are \[AB\]and \[CD\]. And the distance between them is $25{\text{m/s}}$.
\[ \Rightarrow {\text{Area of Trapezoid}} = \dfrac{1}{2} \times \left( {AB + CD} \right) \times 25\]
Now, we substitute the given values as,
\[ \Rightarrow {\text{Area of Trapezoid}} = \dfrac{1}{2} \times (30 + 75) \times 25\]
After simplification we get,
\[ \Rightarrow {\text{Area of Trapezoid}} = 1312.5\;{\text{m}}\]
Hence, the total distance travelled using velocity-time graph is $1312.5\;{\text{m}}$.
Note: Mistakes occur while plotting the velocity-time graph. In $x$-axis, time plotted should be taken cautiously as the timestamps are summed up continuously and plotted. Conversion of units is done for the ease of calculation.
Recently Updated Pages
JEE Main 2023 (April 8th Shift 2) Physics Question Paper with Answer Key

JEE Main 2023 (January 30th Shift 2) Maths Question Paper with Answer Key

JEE Main 2022 (July 25th Shift 2) Physics Question Paper with Answer Key

Classification of Elements and Periodicity in Properties Chapter For JEE Main Chemistry

JEE Main 2023 (January 25th Shift 1) Maths Question Paper with Answer Key

JEE Main 2023 (January 24th Shift 2) Chemistry Question Paper with Answer Key

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility & More

Class 11 JEE Main Physics Mock Test 2025

JEE Main Exam Marking Scheme: Detailed Breakdown of Marks and Negative Marking

JEE Main 2023 January 24 Shift 2 Question Paper with Answer Keys & Solutions

Learn About Angle Of Deviation In Prism: JEE Main Physics 2025

JEE Main 2025: Conversion of Galvanometer Into Ammeter And Voltmeter in Physics

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions for Class 11 Physics Chapter 1 Units and Measurements

NCERT Solutions for Class 11 Physics Chapter 9 Mechanical Properties of Fluids

Units and Measurements Class 11 Notes: CBSE Physics Chapter 1

NCERT Solutions for Class 11 Physics Chapter 2 Motion In A Straight Line

Important Questions for CBSE Class 11 Physics Chapter 1 - Units and Measurement
