Answer
Verified
88.2k+ views
Hint: To answer this question, we should know that angular momentum is rotational equivalent to linear momentum. Linear momentum is the product of a system's mass multiplied by its velocity whereas, angular momentum (L) is the distance of the object from a rotation axis multiplied by the linear momentum
Complete step by step solution:
-First of all, we will discuss spin quantum numbers.
We should know that the spin quantum number (\[{{\text{m}}_{\text{s}}}\]) basically describes the angular momentum of an electron. An electron spinning around an axis will have both angular momentum and orbital angular momentum. We know that angular momentum is a vector quantity and also that the Spin Quantum Number (s) has a magnitude of (1/2) and direction (+ or -).
-We will now talk about orbital angular momentum.
Angular momentum comprises orbital and spin angular momentum and so orbital angular momentum is said to be a component of angular momentum. It is basically the value of the angular momentum of the electron revolving around in its own orbit and we can say that the spinning of the electron around its own axis is neglected.
-Now, coming back to our question we will calculate the orbital angular momentum for a 2-p electron.
We know that orbital angular momentum= $\sqrt {l(l + 1)} \dfrac{h}{{2\pi }}$ (1)
We also know that for a p-orbital the value of l = 1.
So, to find out the value of orbital angular momentum we will put the value of l = 1 for a p-orbital in the equation (1):
Orbital angular momentum= $\sqrt {l(l + 1)} \dfrac{h}{{2\pi }}$
$ = \sqrt {1(1 + 1)} \dfrac{h}{{2\pi }}$
$ = \sqrt 2 \dfrac{h}{{2\pi }}$
Hence we obtain the value of orbital angular momentum for p-orbital to be \[ = \sqrt 2 \dfrac{h}{{2\pi }}\]
So, the correct option will be: (D) $\sqrt 2 \dfrac{h}{{2\pi }}$.
Note: In an atom there are a total of four quantum numbers: the principal quantum number (n) which represents the shell number or the energy level, the orbital angular momentum quantum number (l) which tells us about the orbital shape, the magnetic quantum number (${m_l}$) which tells us about the orientation of the orbital and the electron spin quantum number (${m_s}$) which represents the electron spin direction.
Complete step by step solution:
-First of all, we will discuss spin quantum numbers.
We should know that the spin quantum number (\[{{\text{m}}_{\text{s}}}\]) basically describes the angular momentum of an electron. An electron spinning around an axis will have both angular momentum and orbital angular momentum. We know that angular momentum is a vector quantity and also that the Spin Quantum Number (s) has a magnitude of (1/2) and direction (+ or -).
-We will now talk about orbital angular momentum.
Angular momentum comprises orbital and spin angular momentum and so orbital angular momentum is said to be a component of angular momentum. It is basically the value of the angular momentum of the electron revolving around in its own orbit and we can say that the spinning of the electron around its own axis is neglected.
-Now, coming back to our question we will calculate the orbital angular momentum for a 2-p electron.
We know that orbital angular momentum= $\sqrt {l(l + 1)} \dfrac{h}{{2\pi }}$ (1)
We also know that for a p-orbital the value of l = 1.
So, to find out the value of orbital angular momentum we will put the value of l = 1 for a p-orbital in the equation (1):
Orbital angular momentum= $\sqrt {l(l + 1)} \dfrac{h}{{2\pi }}$
$ = \sqrt {1(1 + 1)} \dfrac{h}{{2\pi }}$
$ = \sqrt 2 \dfrac{h}{{2\pi }}$
Hence we obtain the value of orbital angular momentum for p-orbital to be \[ = \sqrt 2 \dfrac{h}{{2\pi }}\]
So, the correct option will be: (D) $\sqrt 2 \dfrac{h}{{2\pi }}$.
Note: In an atom there are a total of four quantum numbers: the principal quantum number (n) which represents the shell number or the energy level, the orbital angular momentum quantum number (l) which tells us about the orbital shape, the magnetic quantum number (${m_l}$) which tells us about the orientation of the orbital and the electron spin quantum number (${m_s}$) which represents the electron spin direction.
Recently Updated Pages
Name the scale on which the destructive energy of an class 11 physics JEE_Main
Write an article on the need and importance of sports class 10 english JEE_Main
Choose the exact meaning of the given idiomphrase The class 9 english JEE_Main
Choose the one which best expresses the meaning of class 9 english JEE_Main
What does a hydrometer consist of A A cylindrical stem class 9 physics JEE_Main
A motorcyclist of mass m is to negotiate a curve of class 9 physics JEE_Main
Other Pages
Assertion An electron is not deflected on passing through class 12 physics JEE_Main
A crystalline solid a Changes abruptly from solid to class 12 chemistry JEE_Main
The ratio of the diameters of certain air bubbles at class 11 physics JEE_Main
Derive an expression for maximum speed of a car on class 11 physics JEE_Main
Velocity of car at t 0 is u moves with a constant acceleration class 11 physics JEE_Main
Electric field due to uniformly charged sphere class 12 physics JEE_Main