
Some energy levels of a molecule are shown in fig. The ratio of the wavelengths $r = {\lambda _1}/{\lambda _2}$is given by:

$\left( a \right)$ $r = \dfrac{1}{3}$
$\left( b \right)$ $r = \dfrac{4}{3}$
$\left( c \right)$ $r = \dfrac{2}{3}$
$\left( d \right)$ $r = \dfrac{3}{4}$
Answer
206.4k+ views
Hint: we have been given two wavelengths and here are the two transitions. So assuming the corresponding two these two transitions, there is the emission of photons in each case. So firstly we will find the energy of that particular photon then using the relation which we have given in the formula, we will find the ratio between these two wavelengths.
Formula used
The energy of photons,
$E = \dfrac{{hc}}{\lambda }$
Here,
$E$, will be the energy
$h$, will be the planck's constant
$c$, will be the speed of light
$\lambda $, will be the wavelength
Complete Step By Step Solution: As we know the formula for the energy of the photon and it can be written as
$E = \dfrac{{hc}}{\lambda }$
And from here, $\lambda $can be written as
$ \Rightarrow \lambda = \dfrac{{hc}}{E}$
And hence we can say that
$ \Rightarrow \lambda \propto \dfrac{1}{E}$
Now from the figure,
The energy of a photon of wavelength ${\lambda _2}$will be equal to
$ \Rightarrow \vartriangle {E_2} = - E - \left( { - \dfrac{4}{3}} \right)$
On solving the above equation, we get
$ \Rightarrow \vartriangle {E_2} = \dfrac{E}{3}$
Now we will calculate the Energy of the photon of wavelength ${\lambda _1}$ and it will equal to
$ \Rightarrow \vartriangle {E_1} = - E - \left( { - 2E} \right)$
On solving the above equation, we get
$ \Rightarrow \vartriangle {E_1} = E$
So now we will calculate the ratios between the two energies
Therefore, it can be written as
$ \Rightarrow \dfrac{{{\lambda _1}}}{{{\lambda _2}}} = \dfrac{{\vartriangle {E_2}}}{{\vartriangle {E_1}}}$
Now on substituting the values, we get
$ \Rightarrow \dfrac{{{\lambda _1}}}{{{\lambda _2}}} = \dfrac{{\left( {\dfrac{E}{3}} \right)}}{E}$
So we will solve the final above equation to get the required ratios
$ \Rightarrow r = \dfrac{{{\lambda _1}}}{{{\lambda _2}}} = \dfrac{1}{3}$
Therefore, the option $a$will be the correct choice.
Note: According to Einstein's equation $E = m{c^2}$ anything that possesses energy has mass and anything that has mass has energy which is equal to the mass of the particle times square of the speed of light. Photons have $0$ rest mass but they have Energy which is equal to Planck constant times its frequency. So, if the photon has a fixed amount of energy which will be more than zero with zero rest mass but the photon does not exist which has $0$ moving mass so its energy will be zero.
Formula used
The energy of photons,
$E = \dfrac{{hc}}{\lambda }$
Here,
$E$, will be the energy
$h$, will be the planck's constant
$c$, will be the speed of light
$\lambda $, will be the wavelength
Complete Step By Step Solution: As we know the formula for the energy of the photon and it can be written as
$E = \dfrac{{hc}}{\lambda }$
And from here, $\lambda $can be written as
$ \Rightarrow \lambda = \dfrac{{hc}}{E}$
And hence we can say that
$ \Rightarrow \lambda \propto \dfrac{1}{E}$
Now from the figure,
The energy of a photon of wavelength ${\lambda _2}$will be equal to
$ \Rightarrow \vartriangle {E_2} = - E - \left( { - \dfrac{4}{3}} \right)$
On solving the above equation, we get
$ \Rightarrow \vartriangle {E_2} = \dfrac{E}{3}$
Now we will calculate the Energy of the photon of wavelength ${\lambda _1}$ and it will equal to
$ \Rightarrow \vartriangle {E_1} = - E - \left( { - 2E} \right)$
On solving the above equation, we get
$ \Rightarrow \vartriangle {E_1} = E$
So now we will calculate the ratios between the two energies
Therefore, it can be written as
$ \Rightarrow \dfrac{{{\lambda _1}}}{{{\lambda _2}}} = \dfrac{{\vartriangle {E_2}}}{{\vartriangle {E_1}}}$
Now on substituting the values, we get
$ \Rightarrow \dfrac{{{\lambda _1}}}{{{\lambda _2}}} = \dfrac{{\left( {\dfrac{E}{3}} \right)}}{E}$
So we will solve the final above equation to get the required ratios
$ \Rightarrow r = \dfrac{{{\lambda _1}}}{{{\lambda _2}}} = \dfrac{1}{3}$
Therefore, the option $a$will be the correct choice.
Note: According to Einstein's equation $E = m{c^2}$ anything that possesses energy has mass and anything that has mass has energy which is equal to the mass of the particle times square of the speed of light. Photons have $0$ rest mass but they have Energy which is equal to Planck constant times its frequency. So, if the photon has a fixed amount of energy which will be more than zero with zero rest mass but the photon does not exist which has $0$ moving mass so its energy will be zero.
Recently Updated Pages
Chemical Equation - Important Concepts and Tips for JEE

JEE Main 2022 (July 29th Shift 1) Chemistry Question Paper with Answer Key

Conduction, Transfer of Energy Important Concepts and Tips for JEE

JEE Analytical Method of Vector Addition Important Concepts and Tips

Atomic Size - Important Concepts and Tips for JEE

JEE Main 2022 (June 29th Shift 1) Maths Question Paper with Answer Key

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

JEE Main Correction Window 2026- Edit Form Details, Dates and Link

Atomic Structure: Definition, Models, and Examples

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Angle of Deviation in a Prism – Formula, Diagram & Applications

Hybridisation in Chemistry – Concept, Types & Applications

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Collision: Meaning, Types & Examples in Physics

Equation of Trajectory in Projectile Motion: Derivation & Proof

Average and RMS Value in Physics: Formula, Comparison & Application

Ideal and Non-Ideal Solutions Explained for Class 12 Chemistry

How to Convert a Galvanometer into an Ammeter or Voltmeter

