
What is the solution of the differential equation \[{e^{2x - 3y}}dx + {e^{2y - 3x}}dy = 0\]?
A. \[{e^{5x}} + {e^{5y}} = c\]
B. \[{e^{5x}} - {e^{5y}} = c\]
C. \[{e^{5x + 5y}} = c\]
D. None of these
Answer
164.4k+ views
Hint: First we will apply the indices formula to simplify the equation. Then we will separate the variables of the given differential equation. Then we will apply an integration formula to get the solution of the differential equation.
Formula used:
Power formula of indices:
\[{a^{m - n}} = \dfrac{{{a^m}}}{{{a^n}}}\]
\[{a^{m + n}} = {a^m} \cdot {a^n}\]
Integration formula:
\[\int {{e^{mx}}dx} = \dfrac{{{e^{mx}}}}{m} + c\]
Complete step by step solution:
Given differential equation is
\[{e^{2x - 3y}}dx + {e^{2y - 3x}}dy = 0\]
Apply the indices formula:
\[ \Rightarrow \dfrac{{{e^{2x}}}}{{{e^{3y}}}}dx + \dfrac{{{e^{2y}}}}{{{e^{3x}}}}dy = 0\]
Subtract \[\dfrac{{{e^{2y}}}}{{{e^{3x}}}}dy\] from both sides:
\[ \Rightarrow \dfrac{{{e^{2x}}}}{{{e^{3y}}}}dx + \dfrac{{{e^{2y}}}}{{{e^{3x}}}}dy - \dfrac{{{e^{2y}}}}{{{e^{3x}}}}dy = - \dfrac{{{e^{2y}}}}{{{e^{3x}}}}dy\]
\[ \Rightarrow \dfrac{{{e^{2x}}}}{{{e^{3y}}}}dx = - \dfrac{{{e^{2y}}}}{{{e^{3x}}}}dy\]
Multiply \[{e^{3y}} \cdot {e^{3x}}\] on both sides of the equation:
\[ \Rightarrow {e^{2x}} \cdot {e^{3x}}dx = - {e^{2y}} \cdot {e^{3y}}dy\]
Apply indices formula \[{a^{m + n}} = {a^m} \cdot {a^n}\]
\[ \Rightarrow {e^{2x + 3x}}dx = - {e^{2y + 3y}}dy\]
Rewrite the above equation:
\[ \Rightarrow {e^{5x}}dx = - {e^{5y}}dy\]
\[ \Rightarrow {e^{5x}}dx + {e^{5y}}dy = 0\]
Taking integration on both of the equation
\[ \Rightarrow \int {{e^{5x}}dx} + \int {{e^{5y}}dy} = 0\]
Apply integration formula:
\[ \Rightarrow \dfrac{{{e^{5x}}}}{5} + \dfrac{{{e^{5y}}}}{5} = c'\]
Multiply both sides by 5:
\[ \Rightarrow {e^{5x}} + {e^{5y}} = 5c'\]
Now replace \[5c' = c\]
\[ \Rightarrow {e^{5x}} + {e^{5y}} = c\]
Hence option A is the correct option.
Additional information :
The general solution of a differential equation is a solution where we do not have any particular value of integration constant that is C.
Note: Students are often confused with the indices formula. They apply the indices formula on \[{e^{5x}} + {e^{5y}} = c\] and get \[{e^{5x + 5y}} = c\] as a result. But the correct formula is \[{a^{m + n}} = {a^m} \cdot {a^n}\]. Thus the correct solution is \[{e^{5x}} + {e^{5y}} = c\].
Formula used:
Power formula of indices:
\[{a^{m - n}} = \dfrac{{{a^m}}}{{{a^n}}}\]
\[{a^{m + n}} = {a^m} \cdot {a^n}\]
Integration formula:
\[\int {{e^{mx}}dx} = \dfrac{{{e^{mx}}}}{m} + c\]
Complete step by step solution:
Given differential equation is
\[{e^{2x - 3y}}dx + {e^{2y - 3x}}dy = 0\]
Apply the indices formula:
\[ \Rightarrow \dfrac{{{e^{2x}}}}{{{e^{3y}}}}dx + \dfrac{{{e^{2y}}}}{{{e^{3x}}}}dy = 0\]
Subtract \[\dfrac{{{e^{2y}}}}{{{e^{3x}}}}dy\] from both sides:
\[ \Rightarrow \dfrac{{{e^{2x}}}}{{{e^{3y}}}}dx + \dfrac{{{e^{2y}}}}{{{e^{3x}}}}dy - \dfrac{{{e^{2y}}}}{{{e^{3x}}}}dy = - \dfrac{{{e^{2y}}}}{{{e^{3x}}}}dy\]
\[ \Rightarrow \dfrac{{{e^{2x}}}}{{{e^{3y}}}}dx = - \dfrac{{{e^{2y}}}}{{{e^{3x}}}}dy\]
Multiply \[{e^{3y}} \cdot {e^{3x}}\] on both sides of the equation:
\[ \Rightarrow {e^{2x}} \cdot {e^{3x}}dx = - {e^{2y}} \cdot {e^{3y}}dy\]
Apply indices formula \[{a^{m + n}} = {a^m} \cdot {a^n}\]
\[ \Rightarrow {e^{2x + 3x}}dx = - {e^{2y + 3y}}dy\]
Rewrite the above equation:
\[ \Rightarrow {e^{5x}}dx = - {e^{5y}}dy\]
\[ \Rightarrow {e^{5x}}dx + {e^{5y}}dy = 0\]
Taking integration on both of the equation
\[ \Rightarrow \int {{e^{5x}}dx} + \int {{e^{5y}}dy} = 0\]
Apply integration formula:
\[ \Rightarrow \dfrac{{{e^{5x}}}}{5} + \dfrac{{{e^{5y}}}}{5} = c'\]
Multiply both sides by 5:
\[ \Rightarrow {e^{5x}} + {e^{5y}} = 5c'\]
Now replace \[5c' = c\]
\[ \Rightarrow {e^{5x}} + {e^{5y}} = c\]
Hence option A is the correct option.
Additional information :
The general solution of a differential equation is a solution where we do not have any particular value of integration constant that is C.
Note: Students are often confused with the indices formula. They apply the indices formula on \[{e^{5x}} + {e^{5y}} = c\] and get \[{e^{5x + 5y}} = c\] as a result. But the correct formula is \[{a^{m + n}} = {a^m} \cdot {a^n}\]. Thus the correct solution is \[{e^{5x}} + {e^{5y}} = c\].
Recently Updated Pages
Environmental Chemistry Chapter for JEE Main Chemistry

Geometry of Complex Numbers – Topics, Reception, Audience and Related Readings

JEE Main 2021 July 25 Shift 1 Question Paper with Answer Key

JEE Main 2021 July 22 Shift 2 Question Paper with Answer Key

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

Atomic Structure - Electrons, Protons, Neutrons and Atomic Models

Displacement-Time Graph and Velocity-Time Graph for JEE

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Learn About Angle Of Deviation In Prism: JEE Main Physics 2025

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Degree of Dissociation and Its Formula With Solved Example for JEE

Instantaneous Velocity - Formula based Examples for JEE

JEE Main 2025: Conversion of Galvanometer Into Ammeter And Voltmeter in Physics

JEE Advanced 2025 Notes
