
Show how would you join three resistors, each of resistance $9\,\Omega $ so that the equivalent resistance of the combination is $13.5\,\Omega$?
Answer
232.8k+ views
Hint: From the diagram, it is clear that the two resistors are in parallel with the one resistor in the series. First calculate the equivalent resistance of the two parallel resistors using formula. Then with the equivalent resistance calculated, again find the total resistance with the series resistors using the formula.
Useful formula:
(1) The equivalent resistance of the resistors connected in parallel is given by
$r = \dfrac{{{R_1} \times {R_2}}}{{{R_1} + {R_2}}}$
Where $r$ is the equivalent resistor, ${R_1}$ is the first resistor and ${R_2}$ is the second resistor.
(2) The equivalent resistance of the resistors that connected in series,
${R_e} = r + R$
Where ${R_e}$ is the equivalent resistance.
Complete step by step solution:
It is given that the
Resistance of each resistor, ${R_1} = {R_2} = {R_3} = 9\,\Omega $
The equivalent resistance of the combination, $r = 13.5\,\Omega $
The formula of the equivalent resistance is taken.
$r = \dfrac{{{R_1} \times {R_2}}}{{{R_1} + {R_2}}}$
Substituting the values in the above step.
$r = \dfrac{{9 \times 9}}{{9 + 9}}$
By performing simple arithmetic operations.
$r = 4.5\,\Omega $
Using the formula (2) to calculate the equivalent resistance.
${R_e} = r + R$
Substituting the values in the above formula,
${R_e} = 4.5 + 9$
${R_e} = 13.5\,\Omega $
Hence the equivalent resistance of the given circuit is obtained as $13.5\,\Omega $.
Note: Normally adding the resistance in the circuit gives the equivalent resistance, if they are connected in series. Remember the formula of the equivalent resistance in parallel. The parallel circuit has the same voltage in each resistor and the series circuit has the same current in each circuit.
Useful formula:
(1) The equivalent resistance of the resistors connected in parallel is given by
$r = \dfrac{{{R_1} \times {R_2}}}{{{R_1} + {R_2}}}$
Where $r$ is the equivalent resistor, ${R_1}$ is the first resistor and ${R_2}$ is the second resistor.
(2) The equivalent resistance of the resistors that connected in series,
${R_e} = r + R$
Where ${R_e}$ is the equivalent resistance.
Complete step by step solution:
It is given that the
Resistance of each resistor, ${R_1} = {R_2} = {R_3} = 9\,\Omega $
The equivalent resistance of the combination, $r = 13.5\,\Omega $
The formula of the equivalent resistance is taken.
$r = \dfrac{{{R_1} \times {R_2}}}{{{R_1} + {R_2}}}$
Substituting the values in the above step.
$r = \dfrac{{9 \times 9}}{{9 + 9}}$
By performing simple arithmetic operations.
$r = 4.5\,\Omega $
Using the formula (2) to calculate the equivalent resistance.
${R_e} = r + R$
Substituting the values in the above formula,
${R_e} = 4.5 + 9$
${R_e} = 13.5\,\Omega $
Hence the equivalent resistance of the given circuit is obtained as $13.5\,\Omega $.
Note: Normally adding the resistance in the circuit gives the equivalent resistance, if they are connected in series. Remember the formula of the equivalent resistance in parallel. The parallel circuit has the same voltage in each resistor and the series circuit has the same current in each circuit.
Recently Updated Pages
Circuit Switching vs Packet Switching: Key Differences Explained

JEE General Topics in Chemistry Important Concepts and Tips

JEE Extractive Metallurgy Important Concepts and Tips for Exam Preparation

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

Electricity and Magnetism Explained: Key Concepts & Applications

Trending doubts
JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Understanding Uniform Acceleration in Physics

Understanding Electromagnetic Waves and Their Importance

Inductive Effect and Its Role in Acidic Strength

Degree of Dissociation: Meaning, Formula, Calculation & Uses

Other Pages
Understanding Average and RMS Value in Electrical Circuits

Understanding Collisions: Types and Examples for Students

JEE Main Participating Colleges 2026 - A Complete List of Top Colleges

Units and Measurements Mock Test for JEE Main 2025-26 Preparation

Chemistry Question Papers for JEE Main, NEET & Boards (PDFs)

JEE Main 2023 January 25 Shift 1 Question Paper with Answer Keys & Solutions

