
Shabnam has 2 school bags, 3 tiffin boxes, and 2 water bottles. Show how many ways she can carry these items.
Answer
224.1k+ views
Hint: First find the number of ways 1 school bag will be selected from 2 school bags. Then, find the number of ways to select 1 tiffin box out of 3 tiffin boxes. After that find the number of ways to select 1 water bottle out of 2 water bottles. Then to carry these items multiply the number of ways the school bag has been selected, the number of ways the tiffin box has been selected, and the number of ways water bottles must be selected.
Complete step by step answer:
Given:- Shabnam has 2 school bags, 3 tiffin boxes, and 2 water bottles.
There are 2 school bags out of which 1 bag has to be selected. So,
No of ways =$^n{C_r}$
Put, n= 2 and r= 1,
${ \Rightarrow ^2}{C_1} = \dfrac{{2!}}{{1!\left( {2 - 1} \right)!}}$
Simplify the terms,
${ \Rightarrow ^2}{C_1} = \dfrac{{2!}}{{1!1!}}$
Now, expand the factorial,
${ \Rightarrow ^2}{C_1} = \dfrac{{2 \times 1}}{{1 \times 1}}$
Cancel out the common factors to get the number of ways 1 school bags can be selected,
${ \Rightarrow ^2}{C_1} = 2$.........…..(1)
There are 3 tiffin boxes out of which 1 box has to be selected. So,
No of ways =$^n{C_r}$
Put, n= 3 and r= 1,
${ \Rightarrow ^3}{C_1} = \dfrac{{3!}}{{1!\left( {3 - 1} \right)!}}$
Simplify the terms,
${ \Rightarrow ^3}{C_1} = \dfrac{{3!}}{{1!2!}}$
Now, expand the factorial,
${ \Rightarrow ^3}{C_1} = \dfrac{{3 \times 2 \times 1}}{{2 \times 1 \times 1}}$
Cancel out the common factors to get the number of ways 1 school bags can be selected,
${ \Rightarrow ^3}{C_1} = 3$...........…..(2)
There are 2 water bottles out of which 1 bottle has to be selected. So,
No of ways =$^n{C_r}$
Put, n= 2 and r= 1,
${ \Rightarrow ^2}{C_1} = \dfrac{{2!}}{{1!\left( {2 - 1} \right)!}}$
Simplify the terms,
${ \Rightarrow ^2}{C_1} = \dfrac{{2!}}{{1!1!}}$
Now, expand the factorial,
${ \Rightarrow ^2}{C_1} = \dfrac{{2 \times 1}}{{1 \times 1}}$
Cancel out the common factors to get the number of ways 1 school bags can be selected,
${ \Rightarrow ^2}{C_1} = 2$............…..(3)
So, the total number of ways is obtained by multiplying the number of ways a school bag has been selected, the number of ways tiffin boxes have been selected, and the number of ways water bottles must be selected. Then,
$ \Rightarrow $Total Ways ${ = ^2}{C_1}{ \times ^3}{C_1}{ \times ^2}{C_1}$
Substitute the values from the equation (1), (2), and (3),
$ \Rightarrow $Total Ways $ = 2 \times 3 \times 2$
Multiply the terms on the right side to get the final result,
$\therefore $Total Ways $ = 12$
Hence, the total number of ways is 12.
Note: The students are likely to make mistakes when finding the number of ways of selection of the team.
Total Ways ${ = ^2}{C_1}{ \times ^3}{C_1}{ \times ^2}{C_1}$
A combination is a mathematical technique that determines the number of possible arrangements in a collection of items where the order of the selection does not matter. In combinations, you can select the items in any order.
The formula for determining the number of possible arrangements by selecting only a few objects from a set with no repetition is expressed in the following way:
$C\left( {n,r} \right) = \left( \begin{gathered}
n \\
k \\
\end{gathered} \right) = \dfrac{{n!}}{{k!\left( {n - k} \right)!}}$
Complete step by step answer:
Given:- Shabnam has 2 school bags, 3 tiffin boxes, and 2 water bottles.
There are 2 school bags out of which 1 bag has to be selected. So,
No of ways =$^n{C_r}$
Put, n= 2 and r= 1,
${ \Rightarrow ^2}{C_1} = \dfrac{{2!}}{{1!\left( {2 - 1} \right)!}}$
Simplify the terms,
${ \Rightarrow ^2}{C_1} = \dfrac{{2!}}{{1!1!}}$
Now, expand the factorial,
${ \Rightarrow ^2}{C_1} = \dfrac{{2 \times 1}}{{1 \times 1}}$
Cancel out the common factors to get the number of ways 1 school bags can be selected,
${ \Rightarrow ^2}{C_1} = 2$.........…..(1)
There are 3 tiffin boxes out of which 1 box has to be selected. So,
No of ways =$^n{C_r}$
Put, n= 3 and r= 1,
${ \Rightarrow ^3}{C_1} = \dfrac{{3!}}{{1!\left( {3 - 1} \right)!}}$
Simplify the terms,
${ \Rightarrow ^3}{C_1} = \dfrac{{3!}}{{1!2!}}$
Now, expand the factorial,
${ \Rightarrow ^3}{C_1} = \dfrac{{3 \times 2 \times 1}}{{2 \times 1 \times 1}}$
Cancel out the common factors to get the number of ways 1 school bags can be selected,
${ \Rightarrow ^3}{C_1} = 3$...........…..(2)
There are 2 water bottles out of which 1 bottle has to be selected. So,
No of ways =$^n{C_r}$
Put, n= 2 and r= 1,
${ \Rightarrow ^2}{C_1} = \dfrac{{2!}}{{1!\left( {2 - 1} \right)!}}$
Simplify the terms,
${ \Rightarrow ^2}{C_1} = \dfrac{{2!}}{{1!1!}}$
Now, expand the factorial,
${ \Rightarrow ^2}{C_1} = \dfrac{{2 \times 1}}{{1 \times 1}}$
Cancel out the common factors to get the number of ways 1 school bags can be selected,
${ \Rightarrow ^2}{C_1} = 2$............…..(3)
So, the total number of ways is obtained by multiplying the number of ways a school bag has been selected, the number of ways tiffin boxes have been selected, and the number of ways water bottles must be selected. Then,
$ \Rightarrow $Total Ways ${ = ^2}{C_1}{ \times ^3}{C_1}{ \times ^2}{C_1}$
Substitute the values from the equation (1), (2), and (3),
$ \Rightarrow $Total Ways $ = 2 \times 3 \times 2$
Multiply the terms on the right side to get the final result,
$\therefore $Total Ways $ = 12$
Hence, the total number of ways is 12.
Note: The students are likely to make mistakes when finding the number of ways of selection of the team.
Total Ways ${ = ^2}{C_1}{ \times ^3}{C_1}{ \times ^2}{C_1}$
A combination is a mathematical technique that determines the number of possible arrangements in a collection of items where the order of the selection does not matter. In combinations, you can select the items in any order.
The formula for determining the number of possible arrangements by selecting only a few objects from a set with no repetition is expressed in the following way:
$C\left( {n,r} \right) = \left( \begin{gathered}
n \\
k \\
\end{gathered} \right) = \dfrac{{n!}}{{k!\left( {n - k} \right)!}}$
Recently Updated Pages
JEE General Topics in Chemistry Important Concepts and Tips

JEE Extractive Metallurgy Important Concepts and Tips for Exam Preparation

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

Electricity and Magnetism Explained: Key Concepts & Applications

JEE Energetics Important Concepts and Tips for Exam Preparation

Trending doubts
JEE Main 2026: City Intimation Slip Releasing Today, Application Form Closed, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

Understanding the Angle of Deviation in a Prism

How to Convert a Galvanometer into an Ammeter or Voltmeter

Ideal and Non-Ideal Solutions Explained for Class 12 Chemistry

Hybridisation in Chemistry – Concept, Types & Applications

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced 2026 - Exam Date (Released), Syllabus, Registration, Eligibility, Preparation, and More

JEE Advanced 2026 - Exam Date (Released), Syllabus, Registration, Eligibility, Preparation, and More

Understanding Electromagnetic Waves and Their Importance

Understanding Atomic Structure for Beginners

NCERT Solutions for Class 11 Maths Chapter 10 Conic Sections

