
Same spring is attached with 2kg, 3kg and 1 kg blocks in three different cases as shown in figure. If x1, x2, x3 be the extension in the three cases then,



A) x1=0, x3 >x2
B) x1>x2>x3
C) x3>x2>x1
D) x2>x1>x3
Answer
125.4k+ views
Hint: Above problem is based on connected motion concept with the presence of second law of motion (Newton’s law of motion). In the connected system tension (force applied upwards due to the presence of pulley) is given as:
$T = \dfrac{{2{m_1}{m_2}g}}{{{m_1} + {m_2}}}$
Forces acting on a body balance each other, the force which is greater in magnitude exists in the system.
Like in the question pulley will move down if the downward force (mg) will be greater than tension.
Using the similar concept we will solve the problem.
Complete step by step solution:
We have ${x_1},{x_2},{x_3}$ proportional to tension T of the pulley:
So, we will find the tension T of the springs in each three cases by using the formula for tension of the connected system of motion.
$
\Rightarrow {T_1} = \dfrac{{2{m_1}{m_2}g}}{{{m_1} + {m_2}}} \\
\Rightarrow {T_1} = \dfrac{{2 \times 2 \times 2g}}{{2 + 2}} \\
\Rightarrow {T_1} = 2g \\
$
We have substituted the value of masses in the formula given and calculated T1.
Now, we will calculate tension for second diagram
$
\Rightarrow {T_2} = \dfrac{{2 \times 3 \times 2g}}{{3 + 2}} \\
\Rightarrow {T_2} = \dfrac{{12g}}{5} = 2.4g \\
$ (Tension calculated for second diagram)
Now, we will move on to the third figure:
$
\Rightarrow {T_3} = \frac{{2 \times 1 \times 2g}}{{2 + 1}} \\
\Rightarrow {T_3} = \frac{{4g}}{3} = 1.66g \\
$(Tension in figure 3 is calculated)
By observation we got;
${T_2} > {T_1} > {T_3}$
As $T \propto x$
Therefore, we can write as:
${x_2} > {x_1} > {x_3}$
Option: (D) is correct.
Note: We have a number of daily life examples where we are observing Newton’s second law of motion such as, hitting the golf ball, cricket ball, football with a force the more we exert force the more we will observe the reaction. As in our question above force having higher magnitude was existing in the system.
$T = \dfrac{{2{m_1}{m_2}g}}{{{m_1} + {m_2}}}$
Forces acting on a body balance each other, the force which is greater in magnitude exists in the system.
Like in the question pulley will move down if the downward force (mg) will be greater than tension.
Using the similar concept we will solve the problem.
Complete step by step solution:
We have ${x_1},{x_2},{x_3}$ proportional to tension T of the pulley:
So, we will find the tension T of the springs in each three cases by using the formula for tension of the connected system of motion.
$
\Rightarrow {T_1} = \dfrac{{2{m_1}{m_2}g}}{{{m_1} + {m_2}}} \\
\Rightarrow {T_1} = \dfrac{{2 \times 2 \times 2g}}{{2 + 2}} \\
\Rightarrow {T_1} = 2g \\
$
We have substituted the value of masses in the formula given and calculated T1.
Now, we will calculate tension for second diagram
$
\Rightarrow {T_2} = \dfrac{{2 \times 3 \times 2g}}{{3 + 2}} \\
\Rightarrow {T_2} = \dfrac{{12g}}{5} = 2.4g \\
$ (Tension calculated for second diagram)
Now, we will move on to the third figure:
$
\Rightarrow {T_3} = \frac{{2 \times 1 \times 2g}}{{2 + 1}} \\
\Rightarrow {T_3} = \frac{{4g}}{3} = 1.66g \\
$(Tension in figure 3 is calculated)
By observation we got;
${T_2} > {T_1} > {T_3}$
As $T \propto x$
Therefore, we can write as:
${x_2} > {x_1} > {x_3}$
Option: (D) is correct.
Note: We have a number of daily life examples where we are observing Newton’s second law of motion such as, hitting the golf ball, cricket ball, football with a force the more we exert force the more we will observe the reaction. As in our question above force having higher magnitude was existing in the system.
Recently Updated Pages
Birch Reduction and Lindlar Catalyst Important Concepts and Tips for JEE

Isoelectronic Species, Molecules, and Structure Important Concepts for JEE

Ideal and Non-Ideal Solutions Raoult's Law Important Concepts and Tips for JEE

Combined Translational and Rotational Motion for JEE Exam

JEE Main 2023 January 30 Shift 2 Question Paper with Answer Key

JEE Main 2022 (July 27th Shift 1) Chemistry Question Paper with Answer Key

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility & More

Class 11 JEE Main Physics Mock Test 2025

JEE Main Exam Marking Scheme: Detailed Breakdown of Marks and Negative Marking

JEE Main 2023 January 24 Shift 2 Question Paper with Answer Keys & Solutions

Learn About Angle Of Deviation In Prism: JEE Main Physics 2025

JEE Main 2025: Conversion of Galvanometer Into Ammeter And Voltmeter in Physics

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions for Class 11 Physics Chapter 1 Units and Measurements

NCERT Solutions for Class 11 Physics Chapter 9 Mechanical Properties of Fluids

Units and Measurements Class 11 Notes: CBSE Physics Chapter 1

NCERT Solutions for Class 11 Physics Chapter 2 Motion In A Straight Line

Important Questions for CBSE Class 11 Physics Chapter 1 - Units and Measurement
