Answer
Verified
104.1k+ views
Hint: The above problem can be solved by using the concept of the magnetic field. The magnetic field is the region in which other objects experience the effect of the magnetic field intensity. The magnetic field varies according to the current and distance of the conductor.
Complete step by step answer
Given: The current in the wireframe is $i = 2\;{\text{A}}$, the magnetic field around the wireframe is $B = 4\;{\text{T}}$, the side of the wireframe is $l = 1\;{\text{m}}$, the angle of the wireframe with plane is $\theta = 90^\circ $.
The given wireframe is symmetrical so the forces in all the members will be equally distributed. The force in the triangle ACD, triangle CDE and the diagonal CD is the same.
The formula to calculate the net force acting on the frame is given as,
$F = 3Bil\sin \theta $
Substitute $2\;{\text{A}}$for $i$, $1\;{\text{m}}$ for $l$, $4\;{\text{T}}$ for B and $90^\circ $ for $\theta $ in the above expression to find net force acting on the frame.
$F = 3\left( {4\;{\text{T}}} \right)\left( {2\;{\text{A}}} \right)\left( {1\;{\text{m}}} \right)\left( {\sin 90^\circ } \right)$
$F = 24\;{\text{N}}$
Thus, the magnitude of the magnetic force acting on the frame is $24\;{\text{N}}$and the option (A) is the correct answer.
NoteThe magnetic force in the vector form is given as $\vec F = i\left( {\vec l \times \vec B} \right)$. Always substitute the angle of the object with the plane of the magnetic field. The force in all the members of the wireframe is uniform because of the uniform magnetic field around the wireframe.
Complete step by step answer
Given: The current in the wireframe is $i = 2\;{\text{A}}$, the magnetic field around the wireframe is $B = 4\;{\text{T}}$, the side of the wireframe is $l = 1\;{\text{m}}$, the angle of the wireframe with plane is $\theta = 90^\circ $.
The given wireframe is symmetrical so the forces in all the members will be equally distributed. The force in the triangle ACD, triangle CDE and the diagonal CD is the same.
The formula to calculate the net force acting on the frame is given as,
$F = 3Bil\sin \theta $
Substitute $2\;{\text{A}}$for $i$, $1\;{\text{m}}$ for $l$, $4\;{\text{T}}$ for B and $90^\circ $ for $\theta $ in the above expression to find net force acting on the frame.
$F = 3\left( {4\;{\text{T}}} \right)\left( {2\;{\text{A}}} \right)\left( {1\;{\text{m}}} \right)\left( {\sin 90^\circ } \right)$
$F = 24\;{\text{N}}$
Thus, the magnitude of the magnetic force acting on the frame is $24\;{\text{N}}$and the option (A) is the correct answer.
NoteThe magnetic force in the vector form is given as $\vec F = i\left( {\vec l \times \vec B} \right)$. Always substitute the angle of the object with the plane of the magnetic field. The force in all the members of the wireframe is uniform because of the uniform magnetic field around the wireframe.
Recently Updated Pages
Write a composition in approximately 450 500 words class 10 english JEE_Main
Arrange the sentences P Q R between S1 and S5 such class 10 english JEE_Main
Write an article on the need and importance of sports class 10 english JEE_Main
Name the scale on which the destructive energy of an class 11 physics JEE_Main
Choose the exact meaning of the given idiomphrase The class 9 english JEE_Main
Choose the one which best expresses the meaning of class 9 english JEE_Main