
Resistance of semiconductor at \[\mathop 0\nolimits^\circ \mathop K\nolimits_{} \] is:
(А) Zero
(B) Infinite
(С) Large
(D) Small
Answer
126.6k+ views
Hint:Semiconductors lie somewhere in between conductors and insulators. They have few free electrons that can lead to the flow of current. Semiconductors are essentially a crystal lattice in which the atoms are grouped close together. Example - Silicon, Gallium, etc.
Complete step by step solution:
Semiconductors are very unique, their ability of conducting electricity can change when impurities are introduced in the crystal lattice (generally a small percentage of another element is added to the semiconductor). The free electrons that can conduct electricity are said to be in conduction band, basically all the electrons in the conduction band have enough energy to move away from their atoms and conduct electricity.
Resistance is defined as the property that opposes the flow of current.
(А) Zero: conductors are the substances that conduct electricity and allow flow of electrons. Even when no heat is provided, they conduct electricity at that point also.
(B) Infinite: increasing the temperature will increase the energy of more electrons, increasing the total number of free electrons in the conduction band, this will result in increase in conductivity and a decrease in resistivity but when temperature is 0 the resistance is infinite
(С) Large: semiconductors conduct electricity but some amount of heat is also required. When no heat is given semiconductors conduct no electricity at all. So instead of having large resistance they have infinite resistance.
(D) Small: only conductors have small resistance. At zero temperature semiconductors do not contain flow of electrons so their conductance is small and not resistant.
Our required option is (B) that is infinite.
Note: We should know that resistance is the opposition offered by the substance to the flow of electric current. The resistance of a conductor depends on the nature of material and temperature. But in the case of a semiconductor, the effect of increase in the number of free electrons per unit volume is much higher than the effect of decrease in relaxation time. So, the resistance of a semiconductor increases with increase in temperature and vice versa.
Complete step by step solution:
Semiconductors are very unique, their ability of conducting electricity can change when impurities are introduced in the crystal lattice (generally a small percentage of another element is added to the semiconductor). The free electrons that can conduct electricity are said to be in conduction band, basically all the electrons in the conduction band have enough energy to move away from their atoms and conduct electricity.
Resistance is defined as the property that opposes the flow of current.
(А) Zero: conductors are the substances that conduct electricity and allow flow of electrons. Even when no heat is provided, they conduct electricity at that point also.
(B) Infinite: increasing the temperature will increase the energy of more electrons, increasing the total number of free electrons in the conduction band, this will result in increase in conductivity and a decrease in resistivity but when temperature is 0 the resistance is infinite
(С) Large: semiconductors conduct electricity but some amount of heat is also required. When no heat is given semiconductors conduct no electricity at all. So instead of having large resistance they have infinite resistance.
(D) Small: only conductors have small resistance. At zero temperature semiconductors do not contain flow of electrons so their conductance is small and not resistant.
Our required option is (B) that is infinite.
Note: We should know that resistance is the opposition offered by the substance to the flow of electric current. The resistance of a conductor depends on the nature of material and temperature. But in the case of a semiconductor, the effect of increase in the number of free electrons per unit volume is much higher than the effect of decrease in relaxation time. So, the resistance of a semiconductor increases with increase in temperature and vice versa.
Recently Updated Pages
Wheatstone Bridge - Working Principle, Formula, Derivation, Application

Young's Double Slit Experiment Step by Step Derivation

JEE Main 2023 (April 8th Shift 2) Physics Question Paper with Answer Key

JEE Main 2023 (January 30th Shift 2) Maths Question Paper with Answer Key

JEE Main 2022 (July 25th Shift 2) Physics Question Paper with Answer Key

Classification of Elements and Periodicity in Properties Chapter For JEE Main Chemistry

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility & More

JEE Main Login 2045: Step-by-Step Instructions and Details

JEE Main Exam Marking Scheme: Detailed Breakdown of Marks and Negative Marking

JEE Main 2023 January 24 Shift 2 Question Paper with Answer Keys & Solutions

JEE Mains 2025 Correction Window Date (Out) – Check Procedure and Fees Here!

JEE Main Participating Colleges 2024 - A Complete List of Top Colleges

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced 2025: Dates, Registration, Syllabus, Eligibility Criteria and More

Learn About Angle Of Deviation In Prism: JEE Main Physics 2025

JEE Main 2025: Conversion of Galvanometer Into Ammeter And Voltmeter in Physics

Dual Nature of Radiation and Matter Class 12 Notes: CBSE Physics Chapter 11

Electric field due to uniformly charged sphere class 12 physics JEE_Main
