Answer
Verified
85.8k+ views
Hint We know the value of conductor length and resistance of any conductive material here, so by using this formula we calculate the end-to-end resistance of a conductor given length and area, we also know that specific resistance is given in units of ohms for materials.
Useful formula
Resistance of conductor is given below,
$R = \rho * \left( {\dfrac{L}{A}} \right)$
$R = $ resistance in ohms
$\rho = $ material resistivity in ohms per meter
$L = $ conductor length in meters
$A = $ cross-sectional area in square meters
Complete step by step procedure
Given by,
Resistance of a conductor of length $75\,cm$is \[3.25{\text{ }}ohm\]
\[R = 3.25{\text{ }}ohm\] and \[I = 75\,cm\]
Let length of another conductor whose resistance is \[16.25{\text{ }}ohm\]be $x$
\[R{\text{ }} = {\text{ }}16.25{\text{ }}ohm\] \[I = \,x\,cm\]
A conductor's resistance and the conductor's length are directly proportional to one another. The resistance of the conductor also increases as the length of the conductor increases.
The relationship between a conductor's length and resistance is given as $R = \rho * \left( {\dfrac{L}{A}} \right)$
The material of the conductor remains the same, so there is constant resistivity $(\rho )$.
According to that,
The given value in substituting the equation.
So,
$3.25 = \rho \dfrac{{75}}{A}$……………………………. $(1)$
For the resistance to be $13.25$ ohms.
The equation is written as,
$13.25 = \rho \dfrac{x}{A}$……………………………$(2)$
Solving the both equations,
We get,
\[x = 305.76\,cm\]
Hence,
The length of the conductor for it have $13.25\Omega $ resistance is $305.76\,cm$
Thus, option A is the correct answer.
Note As electrons pass through a conductor, such as a metal wire, an electrical current flow. With the ions in the metal, the moving electrons will collide. It makes it harder for the current to flow. All materials have some resilience, but some materials are more or less resistant to electric current flow than other materials.
Useful formula
Resistance of conductor is given below,
$R = \rho * \left( {\dfrac{L}{A}} \right)$
$R = $ resistance in ohms
$\rho = $ material resistivity in ohms per meter
$L = $ conductor length in meters
$A = $ cross-sectional area in square meters
Complete step by step procedure
Given by,
Resistance of a conductor of length $75\,cm$is \[3.25{\text{ }}ohm\]
\[R = 3.25{\text{ }}ohm\] and \[I = 75\,cm\]
Let length of another conductor whose resistance is \[16.25{\text{ }}ohm\]be $x$
\[R{\text{ }} = {\text{ }}16.25{\text{ }}ohm\] \[I = \,x\,cm\]
A conductor's resistance and the conductor's length are directly proportional to one another. The resistance of the conductor also increases as the length of the conductor increases.
The relationship between a conductor's length and resistance is given as $R = \rho * \left( {\dfrac{L}{A}} \right)$
The material of the conductor remains the same, so there is constant resistivity $(\rho )$.
According to that,
The given value in substituting the equation.
So,
$3.25 = \rho \dfrac{{75}}{A}$……………………………. $(1)$
For the resistance to be $13.25$ ohms.
The equation is written as,
$13.25 = \rho \dfrac{x}{A}$……………………………$(2)$
Solving the both equations,
We get,
\[x = 305.76\,cm\]
Hence,
The length of the conductor for it have $13.25\Omega $ resistance is $305.76\,cm$
Thus, option A is the correct answer.
Note As electrons pass through a conductor, such as a metal wire, an electrical current flow. With the ions in the metal, the moving electrons will collide. It makes it harder for the current to flow. All materials have some resilience, but some materials are more or less resistant to electric current flow than other materials.
Recently Updated Pages
Name the scale on which the destructive energy of an class 11 physics JEE_Main
Write an article on the need and importance of sports class 10 english JEE_Main
Choose the exact meaning of the given idiomphrase The class 9 english JEE_Main
Choose the one which best expresses the meaning of class 9 english JEE_Main
What does a hydrometer consist of A A cylindrical stem class 9 physics JEE_Main
A motorcyclist of mass m is to negotiate a curve of class 9 physics JEE_Main
Other Pages
Electric field due to uniformly charged sphere class 12 physics JEE_Main
A cylinder of 10 Lcapacity at 300 Kcontaining the Hegas class 11 chemistry JEE_Main
A scooterist sees a bus 1km ahead of him moving with class 11 physics JEE_Main
If a wire of resistance R is stretched to double of class 12 physics JEE_Main
Derive an expression for maximum speed of a car on class 11 physics JEE_Main
The process requiring the absorption of energy is A class 11 chemistry JEE_Main