
Repeated observations in an experiment gave the values 1.29, 1.33, 1.34, 1.35, 1.32, 1.36, 1.30 and 1.33. Calculate the mean value error, relative error and the percentage error.
Answer
216.3k+ views
Hint: In this question use the concept that the mean value will simply be the sum of all the observations divided by the total number of observations that is $\bar x = \dfrac{{\sum\limits_{i = 1}^n {{x_i}} }}{n}$. Moreover for absolute error calculate the modulus of difference of mean value and the individual readings. For relative error find the ratio of mean absolute error to mean and percentage error will simply be the multiplication of relative error and 100. This will help approaching all the parts of this given problem statement.
Complete step-by-step solution -
Given repeated observations in an experiment are,
1.29, 1.33, 1.34, 1.35, 1.32, 1.36, 1.30 and 1.33.
Let,
${x_1} = 1.29,{x_2} = 1.33,{x_3} = 1.34,{x_4} = 1.35,{x_5} = 1.32,{x_6} = 1.36,{x_7} = 1.30{\text{ and }}{x_8} = 1.33$
$\left( i \right)$ Mean value
Mean value is the sum of all the values divided by the number of values.
So as we see that there are 8 readings.
And the sum of the readings is
1.29 + 1.33 + 1.34 + 1.35 + 1.32 + 1.36 + 1.30 + 1.33 = 10.62
Let the mean of readings is x
$ \Rightarrow x = \dfrac{{10.62}}{8} = 1.3275$
$\left( {ii} \right)$ Absolute error
Absolute error is the modulus of difference of mean value and the individual readings.
Therefore,
$\Delta {x_1} = \left| {x - {x_1}} \right|$ = |1.3275 – 1.29| = 0.0375
$\Delta {x_2} = \left| {x - {x_2}} \right|$= |1.3275 – 1.33| =|-0.0025|= 0.0025
$\Delta {x_3} = \left| {x - {x_3}} \right|$ = |1.3275 – 1.34| = |-0.0125| = 0.0125
$\Delta {x_4} = \left| {x - {x_4}} \right|$ = |1.3275 – 1.35| = |-0.0225| = 0.0225
$\Delta {x_5} = \left| {x - {x_5}} \right|$ = |1.3275 – 1.32| = 0.0075
$\Delta {x_6} = \left| {x - {x_6}} \right|$ = |1.3275 – 1.36| = |-0.0325| = 0.0325
$\Delta {x_7} = \left| {x - {x_7}} \right|$ = |1.3275 – 1.30| = 0.0275
$\Delta {x_8} = \left| {x - {x_8}} \right|$ = |1.3275 – 1.33| = |-0.0025| = 0.0025
$\left( {iii} \right)$ Relative error
It is the $\left( \pm \right)$of the ratio of mean absolute error to mean.
So first find out the mean absolute error $\left( {\Delta x} \right)$
$ \Rightarrow \Delta x = \dfrac{{\Delta {x_1} + \Delta {x_2} + \Delta {x_3} + \Delta {x_4} + \Delta {x_5} + \Delta {x_6} + \Delta {x_7} + \Delta {x_8}}}{8}$
Now substitute all the values we have,
$ \Rightarrow \Delta x = \dfrac{{0.0375 + 0.0025 + 0.0125 + 0.0225 + 0.0075 + 0.0325 + 0.0275 + 0.0025}}{8}$
$ \Rightarrow \Delta x = 0.018125$
So the relative error is
$ \Rightarrow \Delta \bar x = \pm \dfrac{{\Delta x}}{x} = \pm \dfrac{{0.018125}}{{1.3275}} = \pm 0.01365$
$\left( {iv} \right)$ Percentage error
Percentage error is the multiplication of relative error and 100.
%error = 100$ \times \left( { \pm 0.01365} \right)$ = $ \pm 1.365$%
So this is the required answer.
Note – Errors can simply be defined as the difference between the actual values with that of the calculated value. Error can be caused due to any reasons that include human error, or even machine error. Errors can broadly be classified into 3 categories that are syntax error, logical error and run-time errors.
Complete step-by-step solution -
Given repeated observations in an experiment are,
1.29, 1.33, 1.34, 1.35, 1.32, 1.36, 1.30 and 1.33.
Let,
${x_1} = 1.29,{x_2} = 1.33,{x_3} = 1.34,{x_4} = 1.35,{x_5} = 1.32,{x_6} = 1.36,{x_7} = 1.30{\text{ and }}{x_8} = 1.33$
$\left( i \right)$ Mean value
Mean value is the sum of all the values divided by the number of values.
So as we see that there are 8 readings.
And the sum of the readings is
1.29 + 1.33 + 1.34 + 1.35 + 1.32 + 1.36 + 1.30 + 1.33 = 10.62
Let the mean of readings is x
$ \Rightarrow x = \dfrac{{10.62}}{8} = 1.3275$
$\left( {ii} \right)$ Absolute error
Absolute error is the modulus of difference of mean value and the individual readings.
Therefore,
$\Delta {x_1} = \left| {x - {x_1}} \right|$ = |1.3275 – 1.29| = 0.0375
$\Delta {x_2} = \left| {x - {x_2}} \right|$= |1.3275 – 1.33| =|-0.0025|= 0.0025
$\Delta {x_3} = \left| {x - {x_3}} \right|$ = |1.3275 – 1.34| = |-0.0125| = 0.0125
$\Delta {x_4} = \left| {x - {x_4}} \right|$ = |1.3275 – 1.35| = |-0.0225| = 0.0225
$\Delta {x_5} = \left| {x - {x_5}} \right|$ = |1.3275 – 1.32| = 0.0075
$\Delta {x_6} = \left| {x - {x_6}} \right|$ = |1.3275 – 1.36| = |-0.0325| = 0.0325
$\Delta {x_7} = \left| {x - {x_7}} \right|$ = |1.3275 – 1.30| = 0.0275
$\Delta {x_8} = \left| {x - {x_8}} \right|$ = |1.3275 – 1.33| = |-0.0025| = 0.0025
$\left( {iii} \right)$ Relative error
It is the $\left( \pm \right)$of the ratio of mean absolute error to mean.
So first find out the mean absolute error $\left( {\Delta x} \right)$
$ \Rightarrow \Delta x = \dfrac{{\Delta {x_1} + \Delta {x_2} + \Delta {x_3} + \Delta {x_4} + \Delta {x_5} + \Delta {x_6} + \Delta {x_7} + \Delta {x_8}}}{8}$
Now substitute all the values we have,
$ \Rightarrow \Delta x = \dfrac{{0.0375 + 0.0025 + 0.0125 + 0.0225 + 0.0075 + 0.0325 + 0.0275 + 0.0025}}{8}$
$ \Rightarrow \Delta x = 0.018125$
So the relative error is
$ \Rightarrow \Delta \bar x = \pm \dfrac{{\Delta x}}{x} = \pm \dfrac{{0.018125}}{{1.3275}} = \pm 0.01365$
$\left( {iv} \right)$ Percentage error
Percentage error is the multiplication of relative error and 100.
%error = 100$ \times \left( { \pm 0.01365} \right)$ = $ \pm 1.365$%
So this is the required answer.
Note – Errors can simply be defined as the difference between the actual values with that of the calculated value. Error can be caused due to any reasons that include human error, or even machine error. Errors can broadly be classified into 3 categories that are syntax error, logical error and run-time errors.
Recently Updated Pages
JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

Electricity and Magnetism Explained: Key Concepts & Applications

Chemical Properties of Hydrogen - Important Concepts for JEE Exam Preparation

JEE Energetics Important Concepts and Tips for Exam Preparation

JEE Isolation, Preparation and Properties of Non-metals Important Concepts and Tips for Exam Preparation

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

Understanding Collisions: Types and Examples for Students

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Units And Measurements Class 11 Physics Chapter 1 CBSE Notes - 2025-26

NCERT Solutions For Class 11 Physics Chapter 8 Mechanical Properties Of Solids

Motion in a Straight Line Class 11 Physics Chapter 2 CBSE Notes - 2025-26

NCERT Solutions for Class 11 Physics Chapter 7 Gravitation 2025-26

Ideal and Non-Ideal Solutions Explained for Class 12 Chemistry

