
What is the relation between force and acceleration?
Answer
232.8k+ views
Hint: With the help of Newton’s second law we can find the relation between force and acceleration. In general we can feel how much force you applied on any object that much the body gains velocity means if we applied large force then change in velocity is high it can gain higher velocity in less time and as we know acceleration is change in velocity per unit time. so we can relate force and acceleration .
Complete step by step solution:
As we know the Newton’s second law of motion which states that the rate of change of momentum is equal to the applied force
According to second law force
$F = \dfrac{{dp}}{{dt}}$
Here $F$ applied force on the body
$dp$ Change in momentum of the body in small time $dt$
$ \Rightarrow F = \dfrac{{dp}}{{dt}}$
We know momentum $p = mv$
Here $m$ is the mass of body and $v$ is the velocity of body
Put the value p momentum in above equation
$ \Rightarrow F = m\dfrac{{dv}}{{dt}}$
$m$ Is constant for a body
We know the rate of change of velocity is known as acceleration
$a = \dfrac{{dv}}{{dt}}$
From above equation
$ \Rightarrow F = ma$
This is known as another form of Newton’s second law of motion.
From this we can clearly see that the force is directly proportional to the applied force.
Note: Newton’s second law of motion can be formally stated as follows: the acceleration of an object is directly proportional to the magnitude of the net force and inversely proportional to the mass of the object. If we apply a large force on a body then it gains its velocity with large acceleration.
Complete step by step solution:
As we know the Newton’s second law of motion which states that the rate of change of momentum is equal to the applied force
According to second law force
$F = \dfrac{{dp}}{{dt}}$
Here $F$ applied force on the body
$dp$ Change in momentum of the body in small time $dt$
$ \Rightarrow F = \dfrac{{dp}}{{dt}}$
We know momentum $p = mv$
Here $m$ is the mass of body and $v$ is the velocity of body
Put the value p momentum in above equation
$ \Rightarrow F = m\dfrac{{dv}}{{dt}}$
$m$ Is constant for a body
We know the rate of change of velocity is known as acceleration
$a = \dfrac{{dv}}{{dt}}$
From above equation
$ \Rightarrow F = ma$
This is known as another form of Newton’s second law of motion.
From this we can clearly see that the force is directly proportional to the applied force.
Note: Newton’s second law of motion can be formally stated as follows: the acceleration of an object is directly proportional to the magnitude of the net force and inversely proportional to the mass of the object. If we apply a large force on a body then it gains its velocity with large acceleration.
Recently Updated Pages
JEE Main 2023 April 6 Shift 1 Question Paper with Answer Key

JEE Main 2023 April 6 Shift 2 Question Paper with Answer Key

JEE Main 2023 (January 31 Evening Shift) Question Paper with Solutions [PDF]

JEE Main 2023 January 30 Shift 2 Question Paper with Answer Key

JEE Main 2023 January 25 Shift 1 Question Paper with Answer Key

JEE Main 2023 January 24 Shift 2 Question Paper with Answer Key

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Laws of Motion Class 11 Physics Chapter 4 CBSE Notes - 2025-26

Waves Class 11 Physics Chapter 14 CBSE Notes - 2025-26

Mechanical Properties of Fluids Class 11 Physics Chapter 9 CBSE Notes - 2025-26

Thermodynamics Class 11 Physics Chapter 11 CBSE Notes - 2025-26

Units And Measurements Class 11 Physics Chapter 1 CBSE Notes - 2025-26

