Answer
Verified
104.4k+ views
Hint- In order to find the distance by light in the slab first we will assume the travelled distance as a variable. Then we will proceed further by using the lateral shift formula as Snell's law equation which is mentioned in the solution. We will make a clear ray diagram, and then we will proceed further by finding the angle between incident ray and emergent ray.
Formula used- $d = t\dfrac{{\sin \left( {{\theta _a} - {{\theta '}_b}} \right)}}{{\cos {{\theta '}_b}}},m = \dfrac{{\sin {\theta _a}}}{{\sin {{\theta '}_b}}}$
Complete step-by-step answer:
Note- Refraction is the transition of a wave's direction from one medium to another, or from a subtle change in the medium. Light refraction is the most frequently observed phenomenon but other waves like sound waves and water waves also experience refraction. Students must remember the nature of light when it moves from rarer to denser medium and vice-versa. Students must remember Snell’s law to solve such problems.
Formula used- $d = t\dfrac{{\sin \left( {{\theta _a} - {{\theta '}_b}} \right)}}{{\cos {{\theta '}_b}}},m = \dfrac{{\sin {\theta _a}}}{{\sin {{\theta '}_b}}}$
Given that- $m = \sqrt 3 $ , incident angle= ${60^0}$
We will use the following figure to solve this problem.
Complete step-by-step answer:
Let the length traveled in glass be l.
We know that Lateral shift is given as
$d = t\dfrac{{\sin \left( {{\theta _a} - {{\theta '}_b}} \right)}}{{\cos {{\theta '}_b}}}............(1)$
From figure by using the geometry
$t = l\cos {\theta '_b}..............(2)$
Substitute the value of t in above formula we have
$\because d = t\dfrac{{\sin \left( {{\theta _a} - {{\theta '}_b}} \right)}}{{\cos {{\theta '}_b}}}$
$ t = l\cos {{\theta '}_b} \\$
$\Rightarrow d = \left( {l\cos {{\theta '}_b}} \right) \times \dfrac{{\sin \left( {{\theta _a} - {{\theta '}_b}} \right)}}{{\cos {{\theta '}_b}}} \\$
$\Rightarrow d = l\sin \left( {{\theta _a} - {{\theta '}_b}} \right)..............(3) \\$
As we know that Snell's law equation is given as
$ \Rightarrow m = \dfrac{{\sin {\theta _a}}}{{\sin {{\theta '}_b}}}$
Put the value of m and incident angle in order to find the value of ${\theta '_b}$ , we have
$\because m = \dfrac{{\sin {\theta _a}}}{{\sin {{\theta '}_b}}} \\$
$\Rightarrow \sqrt 3 = \dfrac{{\sin {{60}^0}}}{{\sin {{\theta '}_b}}} \\$
$\Rightarrow \sqrt 3 = \dfrac{{\left( {\dfrac{{\sqrt 3 }}{2}} \right)}}{{\sin {{\theta '}_b}}} \\$
$\Rightarrow \sin {{\theta '}_b} = \dfrac{{\left( {\dfrac{{\sqrt 3 }}{2}} \right)}}{{\sqrt 3 }} = \dfrac{1}{2} \\$
$\Rightarrow {{\theta '}_b} = {\sin ^{ - 1}}\left( {\dfrac{1}{2}} \right) \\$
$\Rightarrow {{\theta '}_b} = {30^0} \\$
Now, substitute this value in above equation (3) to obtain the distance travelled by light in the slab, we obtain
$\because d = l\sin \left( {{\theta _a} - {{\theta '}_b}} \right) \\$
$\Rightarrow 2.5 = l\sin \left( {{{60}^0} - {{30}^0}} \right) \\$
$\Rightarrow 2.5 = l\sin \left( {{{30}^0}} \right) \\$
$\Rightarrow 2.5 = l \times \dfrac{1}{2} \\$
$\Rightarrow l = 2.5 \times 2 \\$
$\therefore l = 5\,cm $
Hence, the distance traveled by light in the slab is 5 cm.
Therefore, the correct answer is option B.
Note- Refraction is the transition of a wave's direction from one medium to another, or from a subtle change in the medium. Light refraction is the most frequently observed phenomenon but other waves like sound waves and water waves also experience refraction. Students must remember the nature of light when it moves from rarer to denser medium and vice-versa. Students must remember Snell’s law to solve such problems.
Recently Updated Pages
Write a composition in approximately 450 500 words class 10 english JEE_Main
Arrange the sentences P Q R between S1 and S5 such class 10 english JEE_Main
Write an article on the need and importance of sports class 10 english JEE_Main
Name the scale on which the destructive energy of an class 11 physics JEE_Main
Choose the exact meaning of the given idiomphrase The class 9 english JEE_Main
Choose the one which best expresses the meaning of class 9 english JEE_Main