Refractive index of a rectangular glass slab is $m = \sqrt 3 $. A light ray incident at an angle ${60^0}$ is displaced laterally through $2.5\,cm$ . Distance travelled by light in the slab isA. ${\text{ }}4cm$B. ${\text{ }}5cm$C. ${\text{ }}2.5\sqrt 3 cm$D. ${\text{ }}3cm$
Answer
Verified
118.8k+ views
Hint- In order to find the distance by light in the slab first we will assume the travelled distance as a variable. Then we will proceed further by using the lateral shift formula as Snell's law equation which is mentioned in the solution. We will make a clear ray diagram, and then we will proceed further by finding the angle between incident ray and emergent ray.
Formula used- $d = t\dfrac{{\sin \left( {{\theta _a} - {{\theta '}_b}} \right)}}{{\cos {{\theta '}_b}}},m = \dfrac{{\sin {\theta _a}}}{{\sin {{\theta '}_b}}}$
Complete step-by-step answer:
Note- Refraction is the transition of a wave's direction from one medium to another, or from a subtle change in the medium. Light refraction is the most frequently observed phenomenon but other waves like sound waves and water waves also experience refraction. Students must remember the nature of light when it moves from rarer to denser medium and vice-versa. Students must remember Snell’s law to solve such problems.
Formula used- $d = t\dfrac{{\sin \left( {{\theta _a} - {{\theta '}_b}} \right)}}{{\cos {{\theta '}_b}}},m = \dfrac{{\sin {\theta _a}}}{{\sin {{\theta '}_b}}}$
Given that- $m = \sqrt 3 $ , incident angle= ${60^0}$
We will use the following figure to solve this problem.
Complete step-by-step answer:
Let the length traveled in glass be l.
We know that Lateral shift is given as
$d = t\dfrac{{\sin \left( {{\theta _a} - {{\theta '}_b}} \right)}}{{\cos {{\theta '}_b}}}............(1)$
From figure by using the geometry
$t = l\cos {\theta '_b}..............(2)$
Substitute the value of t in above formula we have
$\because d = t\dfrac{{\sin \left( {{\theta _a} - {{\theta '}_b}} \right)}}{{\cos {{\theta '}_b}}}$
$ t = l\cos {{\theta '}_b} \\$
$\Rightarrow d = \left( {l\cos {{\theta '}_b}} \right) \times \dfrac{{\sin \left( {{\theta _a} - {{\theta '}_b}} \right)}}{{\cos {{\theta '}_b}}} \\$
$\Rightarrow d = l\sin \left( {{\theta _a} - {{\theta '}_b}} \right)..............(3) \\$
As we know that Snell's law equation is given as
$ \Rightarrow m = \dfrac{{\sin {\theta _a}}}{{\sin {{\theta '}_b}}}$
Put the value of m and incident angle in order to find the value of ${\theta '_b}$ , we have
$\because m = \dfrac{{\sin {\theta _a}}}{{\sin {{\theta '}_b}}} \\$
$\Rightarrow \sqrt 3 = \dfrac{{\sin {{60}^0}}}{{\sin {{\theta '}_b}}} \\$
$\Rightarrow \sqrt 3 = \dfrac{{\left( {\dfrac{{\sqrt 3 }}{2}} \right)}}{{\sin {{\theta '}_b}}} \\$
$\Rightarrow \sin {{\theta '}_b} = \dfrac{{\left( {\dfrac{{\sqrt 3 }}{2}} \right)}}{{\sqrt 3 }} = \dfrac{1}{2} \\$
$\Rightarrow {{\theta '}_b} = {\sin ^{ - 1}}\left( {\dfrac{1}{2}} \right) \\$
$\Rightarrow {{\theta '}_b} = {30^0} \\$
Now, substitute this value in above equation (3) to obtain the distance travelled by light in the slab, we obtain
$\because d = l\sin \left( {{\theta _a} - {{\theta '}_b}} \right) \\$
$\Rightarrow 2.5 = l\sin \left( {{{60}^0} - {{30}^0}} \right) \\$
$\Rightarrow 2.5 = l\sin \left( {{{30}^0}} \right) \\$
$\Rightarrow 2.5 = l \times \dfrac{1}{2} \\$
$\Rightarrow l = 2.5 \times 2 \\$
$\therefore l = 5\,cm $
Hence, the distance traveled by light in the slab is 5 cm.
Therefore, the correct answer is option B.
Note- Refraction is the transition of a wave's direction from one medium to another, or from a subtle change in the medium. Light refraction is the most frequently observed phenomenon but other waves like sound waves and water waves also experience refraction. Students must remember the nature of light when it moves from rarer to denser medium and vice-versa. Students must remember Snell’s law to solve such problems.
Recently Updated Pages
JEE Main 2023 January 25 Shift 1 Question Paper with Answer Key
Geostationary Satellites and Geosynchronous Satellites for JEE
Complex Numbers - Important Concepts and Tips for JEE
JEE Main 2023 (February 1st Shift 2) Maths Question Paper with Answer Key
JEE Main 2022 (July 25th Shift 2) Physics Question Paper with Answer Key
Inertial and Non-Inertial Frame of Reference for JEE
Trending doubts
Free Radical Substitution Mechanism of Alkanes for JEE Main 2025
Explain the construction and working of a GeigerMuller class 12 physics JEE_Main
Electron Gain Enthalpy and Electron Affinity for JEE
A combination of five resistors is connected to a cell class 12 physics JEE_Main
Learn Chemistry Normality Formula With Example for JEE Main 2025
JEE Main Physics 2025: Self Inductance of A Solenoid
Other Pages
Inductive Effect and Acidic Strength - Types, Relation and Applications for JEE
JEE Main 2025: Application Form, Exam Dates, Eligibility, and More
Christmas Day History - Celebrate with Love and Joy
Essay on Christmas: Celebrating the Spirit of the Season
JEE Main Physics Question Paper PDF Download with Answer Key
JEE Main 2025 Question Paper PDFs with Solutions Free Download