
Reading of ammeter in ampere for the following circuit is:

A) \[1\]
B) \[\dfrac{1}{2}\]
C) $\dfrac{2}{3}$
D) $3$
Answer
231.6k+ views
Hint: In the given question, the circuit has two loops. We can apply Kirchhoff’s law for each loop to get the unknown current, voltage or resistance values by using the values given. We need to find the reading of the ammeter in a loop, so we will use the Kirchhoff’s second (voltage) law. As we know, Kirchhoff’s voltage law states that “The voltage around a loop is equal to the sum of every voltage drop in the same loop for any closed circuit”. We will use this law and form the equations for both loops separately and then we can solve the equations to get the value of the unknown parameter.
Complete step by step solution:
We will show the given circuit and name the different parameters in the diagram as shown below:

From the circuit, there are two loops i.e. ABCDEA and HCDFGH.
Now, to calculate the unknown parameters, we will use Kirchhoff's voltage law for both loops separately. We will calculate each voltage drop in a loop and put it equal to the voltage in the circuit.
For loop ABCDEA,
\[
\Rightarrow 2{i_1} + 2\left( {{i_1} + {i_2}} \right) = 2 \\
\Rightarrow 2{i_1} + 2{i_1} + 2{i_2} = 2 \\
\Rightarrow 4{i_1} + 2{i_2} = 2 \\
\Rightarrow 2{i_1} + 2{i_2} = 1...\left( 1 \right) \\
\]
For loop HCDFGH,
$
\Rightarrow 2\left( {{i_1} + {i_2}} \right) + 2{i_2} = 2 \\
\Rightarrow 2{i_1} + 2{i_2} + 2{i_2} = 2 \\
\Rightarrow 2{i_1} + 4{i_2} = 2 \\
\Rightarrow {i_1} + 2{i_2} = 1...\left( 2 \right) \\
$
From the equation (1) and (2),
$
\Rightarrow {i_1} + 2\left( {1 - 2{i_1}} \right) = 1 \\
\Rightarrow - 3{i_1} = - 1 \\
\Rightarrow {i_1} = \dfrac{1}{3}A \\
$
On solving,
$
\Rightarrow {i_2} = 1 - 2\left( {\dfrac{1}{3}} \right) \\
\Rightarrow {i_2} = \dfrac{1}{3}A \\
$
Thus, we can calculate the ammeter reading by adding the both currents.
$
i = {i_1} + {i_2} \\
\Rightarrow i = \dfrac{1}{3} + \dfrac{1}{3} \\
\Rightarrow i = \dfrac{2}{3}A \\
$
Therefore, the ammeter reading is $\dfrac{2}{3}A$ .
Hence, the correct option is (C).
Note: In the given question, we need to analyse the circuit and find the law which will help us to find the unknown parameter. For any circuit, we have to look for nodes or loops which are given. After that we can apply Kirchhoff's current law if nodes are given or Kirchhoff’s voltage law if loops are given. The equations for voltage drop and node current will lead us to find the required parameter.
Complete step by step solution:
We will show the given circuit and name the different parameters in the diagram as shown below:

From the circuit, there are two loops i.e. ABCDEA and HCDFGH.
Now, to calculate the unknown parameters, we will use Kirchhoff's voltage law for both loops separately. We will calculate each voltage drop in a loop and put it equal to the voltage in the circuit.
For loop ABCDEA,
\[
\Rightarrow 2{i_1} + 2\left( {{i_1} + {i_2}} \right) = 2 \\
\Rightarrow 2{i_1} + 2{i_1} + 2{i_2} = 2 \\
\Rightarrow 4{i_1} + 2{i_2} = 2 \\
\Rightarrow 2{i_1} + 2{i_2} = 1...\left( 1 \right) \\
\]
For loop HCDFGH,
$
\Rightarrow 2\left( {{i_1} + {i_2}} \right) + 2{i_2} = 2 \\
\Rightarrow 2{i_1} + 2{i_2} + 2{i_2} = 2 \\
\Rightarrow 2{i_1} + 4{i_2} = 2 \\
\Rightarrow {i_1} + 2{i_2} = 1...\left( 2 \right) \\
$
From the equation (1) and (2),
$
\Rightarrow {i_1} + 2\left( {1 - 2{i_1}} \right) = 1 \\
\Rightarrow - 3{i_1} = - 1 \\
\Rightarrow {i_1} = \dfrac{1}{3}A \\
$
On solving,
$
\Rightarrow {i_2} = 1 - 2\left( {\dfrac{1}{3}} \right) \\
\Rightarrow {i_2} = \dfrac{1}{3}A \\
$
Thus, we can calculate the ammeter reading by adding the both currents.
$
i = {i_1} + {i_2} \\
\Rightarrow i = \dfrac{1}{3} + \dfrac{1}{3} \\
\Rightarrow i = \dfrac{2}{3}A \\
$
Therefore, the ammeter reading is $\dfrac{2}{3}A$ .
Hence, the correct option is (C).
Note: In the given question, we need to analyse the circuit and find the law which will help us to find the unknown parameter. For any circuit, we have to look for nodes or loops which are given. After that we can apply Kirchhoff's current law if nodes are given or Kirchhoff’s voltage law if loops are given. The equations for voltage drop and node current will lead us to find the required parameter.
Recently Updated Pages
Represent graphically the variation of the electric class 12 physics JEE_Main

Two equal bar magnets are kept as shown in the figure class 12 physics JEE_Main

A cube made up of wire each of resistance R Then find class 12 physics JEE_Main

Two charges 9e and 3e are placed at a separation r class 12 physics JEE_Main

Reading of ammeter in ampere for the following circuit class 12 physics JEE_Main

The work done in slowly moving an electron of charge class 12 physics JEE_Main

Trending doubts
JEE Main 2026: Admit Card Out, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Understanding Uniform Acceleration in Physics

Dual Nature of Radiation and Matter Class 12 Physics Chapter 11 CBSE Notes - 2025-26

Understanding the Electric Field of a Uniformly Charged Ring

Derivation of Equation of Trajectory Explained for Students

Understanding Electromagnetic Waves and Their Importance

