
Reading of ammeter in ampere for the following circuit is:

A) \[1\]
B) \[\dfrac{1}{2}\]
C) $\dfrac{2}{3}$
D) $3$
Answer
218.1k+ views
Hint: In the given question, the circuit has two loops. We can apply Kirchhoff’s law for each loop to get the unknown current, voltage or resistance values by using the values given. We need to find the reading of the ammeter in a loop, so we will use the Kirchhoff’s second (voltage) law. As we know, Kirchhoff’s voltage law states that “The voltage around a loop is equal to the sum of every voltage drop in the same loop for any closed circuit”. We will use this law and form the equations for both loops separately and then we can solve the equations to get the value of the unknown parameter.
Complete step by step solution:
We will show the given circuit and name the different parameters in the diagram as shown below:

From the circuit, there are two loops i.e. ABCDEA and HCDFGH.
Now, to calculate the unknown parameters, we will use Kirchhoff's voltage law for both loops separately. We will calculate each voltage drop in a loop and put it equal to the voltage in the circuit.
For loop ABCDEA,
\[
\Rightarrow 2{i_1} + 2\left( {{i_1} + {i_2}} \right) = 2 \\
\Rightarrow 2{i_1} + 2{i_1} + 2{i_2} = 2 \\
\Rightarrow 4{i_1} + 2{i_2} = 2 \\
\Rightarrow 2{i_1} + 2{i_2} = 1...\left( 1 \right) \\
\]
For loop HCDFGH,
$
\Rightarrow 2\left( {{i_1} + {i_2}} \right) + 2{i_2} = 2 \\
\Rightarrow 2{i_1} + 2{i_2} + 2{i_2} = 2 \\
\Rightarrow 2{i_1} + 4{i_2} = 2 \\
\Rightarrow {i_1} + 2{i_2} = 1...\left( 2 \right) \\
$
From the equation (1) and (2),
$
\Rightarrow {i_1} + 2\left( {1 - 2{i_1}} \right) = 1 \\
\Rightarrow - 3{i_1} = - 1 \\
\Rightarrow {i_1} = \dfrac{1}{3}A \\
$
On solving,
$
\Rightarrow {i_2} = 1 - 2\left( {\dfrac{1}{3}} \right) \\
\Rightarrow {i_2} = \dfrac{1}{3}A \\
$
Thus, we can calculate the ammeter reading by adding the both currents.
$
i = {i_1} + {i_2} \\
\Rightarrow i = \dfrac{1}{3} + \dfrac{1}{3} \\
\Rightarrow i = \dfrac{2}{3}A \\
$
Therefore, the ammeter reading is $\dfrac{2}{3}A$ .
Hence, the correct option is (C).
Note: In the given question, we need to analyse the circuit and find the law which will help us to find the unknown parameter. For any circuit, we have to look for nodes or loops which are given. After that we can apply Kirchhoff's current law if nodes are given or Kirchhoff’s voltage law if loops are given. The equations for voltage drop and node current will lead us to find the required parameter.
Complete step by step solution:
We will show the given circuit and name the different parameters in the diagram as shown below:

From the circuit, there are two loops i.e. ABCDEA and HCDFGH.
Now, to calculate the unknown parameters, we will use Kirchhoff's voltage law for both loops separately. We will calculate each voltage drop in a loop and put it equal to the voltage in the circuit.
For loop ABCDEA,
\[
\Rightarrow 2{i_1} + 2\left( {{i_1} + {i_2}} \right) = 2 \\
\Rightarrow 2{i_1} + 2{i_1} + 2{i_2} = 2 \\
\Rightarrow 4{i_1} + 2{i_2} = 2 \\
\Rightarrow 2{i_1} + 2{i_2} = 1...\left( 1 \right) \\
\]
For loop HCDFGH,
$
\Rightarrow 2\left( {{i_1} + {i_2}} \right) + 2{i_2} = 2 \\
\Rightarrow 2{i_1} + 2{i_2} + 2{i_2} = 2 \\
\Rightarrow 2{i_1} + 4{i_2} = 2 \\
\Rightarrow {i_1} + 2{i_2} = 1...\left( 2 \right) \\
$
From the equation (1) and (2),
$
\Rightarrow {i_1} + 2\left( {1 - 2{i_1}} \right) = 1 \\
\Rightarrow - 3{i_1} = - 1 \\
\Rightarrow {i_1} = \dfrac{1}{3}A \\
$
On solving,
$
\Rightarrow {i_2} = 1 - 2\left( {\dfrac{1}{3}} \right) \\
\Rightarrow {i_2} = \dfrac{1}{3}A \\
$
Thus, we can calculate the ammeter reading by adding the both currents.
$
i = {i_1} + {i_2} \\
\Rightarrow i = \dfrac{1}{3} + \dfrac{1}{3} \\
\Rightarrow i = \dfrac{2}{3}A \\
$
Therefore, the ammeter reading is $\dfrac{2}{3}A$ .
Hence, the correct option is (C).
Note: In the given question, we need to analyse the circuit and find the law which will help us to find the unknown parameter. For any circuit, we have to look for nodes or loops which are given. After that we can apply Kirchhoff's current law if nodes are given or Kirchhoff’s voltage law if loops are given. The equations for voltage drop and node current will lead us to find the required parameter.
Recently Updated Pages
Young’s Double Slit Experiment Derivation Explained

Wheatstone Bridge Explained: Working, Formula & Uses

Chemical Properties of Hydrogen - Important Concepts for JEE Exam Preparation

JEE General Topics in Chemistry Important Concepts and Tips

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

Understanding Collisions: Types and Examples for Students

Understanding Atomic Structure for Beginners

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

How to Convert a Galvanometer into an Ammeter or Voltmeter

Ideal and Non-Ideal Solutions Explained for Class 12 Chemistry

Degree of Dissociation: Meaning, Formula, Calculation & Uses

Understanding Electromagnetic Waves and Their Importance

Understanding Average and RMS Value in Electrical Circuits

