Answer
Verified
95.4k+ views
Hint: - The odometer is a device used to determine the distance travelled by a vehicle. It is fitted right next to the speedometer. To get the distance travelled by car in between the given time determine the difference in readings of the odometer. To get the average speed divide the total distance travelled by car by the total time taken.
Formula used:
The formula of the average speed is given by,
${v_{avg}} = \dfrac{{{s_t}}}{t}$
where the average speed is ${v_{avg}}$, the total distance is ${s_t}$ and time taken is $t$ .
Complete step-by-step solution:
At the starting of this trip, the odometer reading was $4200\;km$ .
At the end of the trip, the odometer reading is $4460\;km$ .
The total distance travelled by the motorbike is $\Delta S = 4460 - 4200 = 260km$
The total time taken to cover the distance is $4\;h$ $20\min $
Now conversion of the time from minute to hour is given by dividing the minute value by $60\;$.
Hence, the minute value is:
$\dfrac{{20}}{{60}} = \dfrac{1}{3}h$
Therefore, the total time taken in hours is,
$4\dfrac{1}{3} = \dfrac{{13}}{3}h$
Now using the average speed formula, we can find the value of speed in terms of $km/h$ as:
${v_{avg}} = \dfrac{{{s_t}}}{t}$
Placing the value of distance and time in the above formula, we get the value of the average speed as:
${v_{avg}} = \dfrac{{260}}{{\left( {\dfrac{{13}}{3}} \right)}}$
$ \Rightarrow {v_{avg}} = \dfrac{{260 \times 3}}{{13}} = 60km/h$
We are asked to calculate the motorbike’s average speed in $m/s$.
To convert kilometers to meters we need to multiply the value in kilometers with $1000\;$ .
We also know that an hour is $60\;$ minutes and $60\;$ minutes is $60 \times 60 = 3600\operatorname{s} $ . Hence to convert hour to the second we need to multiply the value in the hour with $3600\;$ .
Therefore to convert $km/h$ to $m/\operatorname{s} $ we need to multiply $60km/h$ with $\dfrac{{1000}}{{3600}}$ .
i.e. $60km/h = 60 \times \dfrac{{1000}}{{3600}}m/s$
$ \Rightarrow 16.66m/s$
Hence the average speed of the motorbike in $m/s$ is $16.66m/s$ .
As the motorcycle is moving in a straight line without turning back, therefore, the magnitude of average speed and average velocity over a time interval is the same.
Note: Remember that the particle speed is related to distance and particle velocity is related to the displacement that’s why their same value gives the same amount of distance and displacement. For achieving this condition, the particles have to move in a straight line.
Formula used:
The formula of the average speed is given by,
${v_{avg}} = \dfrac{{{s_t}}}{t}$
where the average speed is ${v_{avg}}$, the total distance is ${s_t}$ and time taken is $t$ .
Complete step-by-step solution:
At the starting of this trip, the odometer reading was $4200\;km$ .
At the end of the trip, the odometer reading is $4460\;km$ .
The total distance travelled by the motorbike is $\Delta S = 4460 - 4200 = 260km$
The total time taken to cover the distance is $4\;h$ $20\min $
Now conversion of the time from minute to hour is given by dividing the minute value by $60\;$.
Hence, the minute value is:
$\dfrac{{20}}{{60}} = \dfrac{1}{3}h$
Therefore, the total time taken in hours is,
$4\dfrac{1}{3} = \dfrac{{13}}{3}h$
Now using the average speed formula, we can find the value of speed in terms of $km/h$ as:
${v_{avg}} = \dfrac{{{s_t}}}{t}$
Placing the value of distance and time in the above formula, we get the value of the average speed as:
${v_{avg}} = \dfrac{{260}}{{\left( {\dfrac{{13}}{3}} \right)}}$
$ \Rightarrow {v_{avg}} = \dfrac{{260 \times 3}}{{13}} = 60km/h$
We are asked to calculate the motorbike’s average speed in $m/s$.
To convert kilometers to meters we need to multiply the value in kilometers with $1000\;$ .
We also know that an hour is $60\;$ minutes and $60\;$ minutes is $60 \times 60 = 3600\operatorname{s} $ . Hence to convert hour to the second we need to multiply the value in the hour with $3600\;$ .
Therefore to convert $km/h$ to $m/\operatorname{s} $ we need to multiply $60km/h$ with $\dfrac{{1000}}{{3600}}$ .
i.e. $60km/h = 60 \times \dfrac{{1000}}{{3600}}m/s$
$ \Rightarrow 16.66m/s$
Hence the average speed of the motorbike in $m/s$ is $16.66m/s$ .
As the motorcycle is moving in a straight line without turning back, therefore, the magnitude of average speed and average velocity over a time interval is the same.
Note: Remember that the particle speed is related to distance and particle velocity is related to the displacement that’s why their same value gives the same amount of distance and displacement. For achieving this condition, the particles have to move in a straight line.
Recently Updated Pages
Write a composition in approximately 450 500 words class 10 english JEE_Main
Arrange the sentences P Q R between S1 and S5 such class 10 english JEE_Main
Write an article on the need and importance of sports class 10 english JEE_Main
Name the scale on which the destructive energy of an class 11 physics JEE_Main
Choose the exact meaning of the given idiomphrase The class 9 english JEE_Main
Choose the one which best expresses the meaning of class 9 english JEE_Main
Other Pages
An object is moving with speed v0 towards a spherical class 12 physics JEE_Main
Given figure shows the vertical section of a frictionless class 11 physics JEE_Main
The youngs modulus of air is A Infinity B more than class 11 physics JEE_Main
Electric field due to uniformly charged sphere class 12 physics JEE_Main
If a wire of resistance R is stretched to double of class 12 physics JEE_Main