
Question: Out of two resolved components of a force, one is $10\;N$ and it makes an angle of ${60^\circ }$ with the force. The magnitude of the force is:
(A) $7.1\;N$
(B) $4.33\;N$
(C) $17.3\;N$
(D) $20\;N$
Answer
206.7k+ views
Hint: In physics, a vector is a physical quantity that has both magnitude and direction. It is denoted with an arrow sign on top of the quantity, for example $\vec A$. In order to signify just the magnitude of the vector, we can show this as $\left| {\left. A \right|} \right.$ or simply $A$.
Complete step by step solution:
Any vector quantity possessing a magnitude and a direction can be divided into two different components, called the rectangular components.
Similarly, the force being a vector quantity can also be divided into two different components. Here we have considered the components to be along the x-axis and the y-axis. This representation is shown in the figure below.

If $\theta $ be the angle made by the force vector, $\vec F$ to the x-axis, then following the figure from trigonometric properties we can see that the $x$ component of the vector is given as $F\cos \theta $, while the $y$ component is given as $F\sin \theta $.
Using these relations we are going to solve this question.
In the question, it is given that one of the components of the force if $10\;N$.
Hence we can say that any of the two rectangular components of force is $10\;N$.
Therefore let us consider the component along the x-axis to be $10\;N$.
$\therefore F\cos \theta = 10$
From the question, we know that the force vector makes an angle ${60^\circ }$ with the above vector component. Hence the above equation can be written as,
$F\cos {60^\circ } = 10$
Dividing both the sides with $\cos {60^\circ }$ we get,
$F = \dfrac{{10}}{{\cos {{60}^\circ }}}$
We know the value of $\cos {60^\circ }$ is $\dfrac{1}{2}$.
Substituting this in the above equation we get,
$F = \dfrac{{10}}{{1/2}}$
Simplifying this equation further we get,
$F = 10 \times 2$
$\therefore F = 20N$
Hence the magnitude of the given force vector is $20\;N$.
Therefore the correct answer is option (D) $20\;N$.
Note: Just like we can divide a vector into two rectangular components, we can also add two vectors with different directions into a resultant vector using the rectangle law of vector addition or subtraction. Triangle law is another method of vector addition.
Complete step by step solution:
Any vector quantity possessing a magnitude and a direction can be divided into two different components, called the rectangular components.
Similarly, the force being a vector quantity can also be divided into two different components. Here we have considered the components to be along the x-axis and the y-axis. This representation is shown in the figure below.

If $\theta $ be the angle made by the force vector, $\vec F$ to the x-axis, then following the figure from trigonometric properties we can see that the $x$ component of the vector is given as $F\cos \theta $, while the $y$ component is given as $F\sin \theta $.
Using these relations we are going to solve this question.
In the question, it is given that one of the components of the force if $10\;N$.
Hence we can say that any of the two rectangular components of force is $10\;N$.
Therefore let us consider the component along the x-axis to be $10\;N$.
$\therefore F\cos \theta = 10$
From the question, we know that the force vector makes an angle ${60^\circ }$ with the above vector component. Hence the above equation can be written as,
$F\cos {60^\circ } = 10$
Dividing both the sides with $\cos {60^\circ }$ we get,
$F = \dfrac{{10}}{{\cos {{60}^\circ }}}$
We know the value of $\cos {60^\circ }$ is $\dfrac{1}{2}$.
Substituting this in the above equation we get,
$F = \dfrac{{10}}{{1/2}}$
Simplifying this equation further we get,
$F = 10 \times 2$
$\therefore F = 20N$
Hence the magnitude of the given force vector is $20\;N$.
Therefore the correct answer is option (D) $20\;N$.
Note: Just like we can divide a vector into two rectangular components, we can also add two vectors with different directions into a resultant vector using the rectangle law of vector addition or subtraction. Triangle law is another method of vector addition.
Recently Updated Pages
JEE Mains Correction Window 2026- Session 1 and 2 Dates, Form Edit Link, Fee

Chemical Equation - Important Concepts and Tips for JEE

JEE Main 2022 (July 29th Shift 1) Chemistry Question Paper with Answer Key

Conduction, Transfer of Energy Important Concepts and Tips for JEE

JEE Analytical Method of Vector Addition Important Concepts and Tips

Atomic Size - Important Concepts and Tips for JEE

Trending doubts
Atomic Structure: Definition, Models, and Examples

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Average and RMS Value in Physics: Formula, Comparison & Application

Ideal and Non-Ideal Solutions Explained for Class 12 Chemistry

How to Convert a Galvanometer into an Ammeter or Voltmeter

Degree of Dissociation: Meaning, Formula, Calculation & Uses

Other Pages
JEE Advanced 2025: Dates, Registration, Syllabus, Eligibility Criteria and More

Electric Field Due to a Uniformly Charged Ring Explained

Geostationary and Geosynchronous Satellites Explained

Alpha, Beta, and Gamma Decay Explained for JEE & NEET

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Laws of Motion Class 11 Physics Chapter 4 CBSE Notes - 2025-26

