Answer
Verified
104.1k+ views
Hint- Here, we will proceed by replacing $x$ with $g\left( x \right)$ in $f\left( x \right)$.
Given two functions $f\left( x \right) = 8{x^3}$ and $g\left( x \right) = {x^{\dfrac{1}{3}}}$
$fog\left( x \right) = f\left( {g\left( x \right)} \right) = f\left( {{x^{\dfrac{1}{3}}}} \right)$
The above function can be determined by replacing $x$ with ${x^{\dfrac{1}{3}}}$ in $f\left( x \right) = 8{x^3}$, we get
\[ \Rightarrow fog\left( x \right) = f\left( {g\left( x \right)} \right) = f\left( {{x^{\dfrac{1}{3}}}} \right) = 8{\left( {{x^{\dfrac{1}{3}}}} \right)^3} = 8x\]
Therefore, option D is correct.
Note- In these type of problems, in order to find the required function like $fog\left( x \right)$ we replace $x$ in $f\left( x \right)$ with $g\left( x \right)$ and similarly to find the function $gof\left( x \right)$ we replace $x$ in $g\left( x \right)$ with $f\left( x \right)$.
Given two functions $f\left( x \right) = 8{x^3}$ and $g\left( x \right) = {x^{\dfrac{1}{3}}}$
$fog\left( x \right) = f\left( {g\left( x \right)} \right) = f\left( {{x^{\dfrac{1}{3}}}} \right)$
The above function can be determined by replacing $x$ with ${x^{\dfrac{1}{3}}}$ in $f\left( x \right) = 8{x^3}$, we get
\[ \Rightarrow fog\left( x \right) = f\left( {g\left( x \right)} \right) = f\left( {{x^{\dfrac{1}{3}}}} \right) = 8{\left( {{x^{\dfrac{1}{3}}}} \right)^3} = 8x\]
Therefore, option D is correct.
Note- In these type of problems, in order to find the required function like $fog\left( x \right)$ we replace $x$ in $f\left( x \right)$ with $g\left( x \right)$ and similarly to find the function $gof\left( x \right)$ we replace $x$ in $g\left( x \right)$ with $f\left( x \right)$.
Recently Updated Pages
Write a composition in approximately 450 500 words class 10 english JEE_Main
Arrange the sentences P Q R between S1 and S5 such class 10 english JEE_Main
Write an article on the need and importance of sports class 10 english JEE_Main
Name the scale on which the destructive energy of an class 11 physics JEE_Main
Choose the exact meaning of the given idiomphrase The class 9 english JEE_Main
Choose the one which best expresses the meaning of class 9 english JEE_Main