
Prove that the locus of the middle point of a portion of a normal intersected between the curve and the axis is a parabola whose vertex is the focus and whose latus rectum is one quarter of the original parabola.
Answer
217.8k+ views
Hint: The equation of normal in parametric form is given as \[y=-tx+2at+a{{t}^{3}}\], where the normal is drawn at a point \[P\] with parameter \[t\].
First of all , let’s take the equation of the parabola to be \[{{y}^{2}}=4ax\].

Coordinates of any point on the parabola in parametric form is given as \[P\left( a{{t}^{2}},2at \right)\].
We know, equation of normal in parametric form , where the normal is drawn at a point \[P\] with parameter \[t\], is given as
\[y=-tx+2at+a{{t}^{3}}....\left( i \right)\]
Also, the equation of axis of the parabola is
\[y=0.....\left( ii \right)\]
To find the points of intersection of \[\left( i \right)\]and\[\left( ii \right)\], we substitute \[y=0\] in \[\left( i \right)\].
So, \[0=-tx+2at+{{t}^{3}}\]
\[\Rightarrow x=2a+a{{t}^{2}}\]
So , the point of intersection of the axis and the normal is \[\left( 2a+a{{t}^{2}},0 \right)\].
Now , let the midpoint of intercepted portion be \[\left( h,k \right).....\left( iii \right)\]
But we also know that the extremities of the intercepted portion are \[\left( a{{t}^{2}},2at \right)\] and \[\left( 2a+a{{t}^{2}},0 \right)\].
Now, we know that the coordinates of the midpoint of the line joining two points \[\left( {{x}_{1}},{{y}_{1}} \right)\] and \[\left( {{x}_{2}},{{y}_{2}} \right)\] is given as: \[\left( \dfrac{{{x}_{1}}+{{x}_{2}}}{2},\dfrac{{{y}_{1}}+{{y}_{2}}}{2} \right)\]
So, the coordinates of the midpoint are
\[\left( \dfrac{a{{t}^{2}}+2a+a{{t}^{2}}}{2},\dfrac{2at+0}{2} \right)\]
\[=\left( a{{t}^{2}}+a,at \right)...\left( iv \right)\]
So, from \[\left( iii \right)\]and \[\left( iv \right)\], we can say
\[h=a{{t}^{2}}+a....\left( v \right)\], \[k=at\]
Now, \[k=at\]\[\Rightarrow t=\dfrac{k}{a}...\left( vi \right)\]
Substituting \[t=\dfrac{k}{a}\]in \[\left( v \right)\], we get
\[h=a{{\left( \dfrac{k}{a} \right)}^{2}}+a\]
\[\Rightarrow h=\dfrac{{{k}^{2}}}{a}+a\]
\[\Rightarrow {{k}^{2}}=ah-{{a}^{2}}........\] equation\[(vii)\]
Now , to get the equation of the locus of \[\left( h,k \right)\], we will substitute \[(x,y)\] in place of \[\left( h,k \right)\] in equation\[(vii)\].
Or, \[{{y}^{2}}=a\left( x-a \right)....\left( viii \right)\] is the equation of the locus.
Now , we know the length of the latus rectum of \[{{y}^{2}}=4ax\] is \[4a\].
Now , the length of latus rectum of parabola given by equation \[\left( vii \right)\]is \[4\times \dfrac{a}{4}=a\]
Also, the vertex of \[\left( viii \right)\] is \[\left( a,0 \right)\] which is the focus of \[{{y}^{2}}=4ax\]
Hence , the length of the latus rectum of the locus is one quarter of the original parabola and the vertex of the locus is the focus of the original parabola .
Note: Length of latus rectum of parabola \[{{y}^{2}}=4ax\] is equal to \[4a\] and not \[a\].
Focus of parabola \[{{y}^{2}}=4ax\] is \[\left( a,0 \right)\] and not \[(4a,0)\].
Students generally get confused and make mistakes which results in wrong answers. So , such mistakes should be avoided .
First of all , let’s take the equation of the parabola to be \[{{y}^{2}}=4ax\].

Coordinates of any point on the parabola in parametric form is given as \[P\left( a{{t}^{2}},2at \right)\].
We know, equation of normal in parametric form , where the normal is drawn at a point \[P\] with parameter \[t\], is given as
\[y=-tx+2at+a{{t}^{3}}....\left( i \right)\]
Also, the equation of axis of the parabola is
\[y=0.....\left( ii \right)\]
To find the points of intersection of \[\left( i \right)\]and\[\left( ii \right)\], we substitute \[y=0\] in \[\left( i \right)\].
So, \[0=-tx+2at+{{t}^{3}}\]
\[\Rightarrow x=2a+a{{t}^{2}}\]
So , the point of intersection of the axis and the normal is \[\left( 2a+a{{t}^{2}},0 \right)\].
Now , let the midpoint of intercepted portion be \[\left( h,k \right).....\left( iii \right)\]
But we also know that the extremities of the intercepted portion are \[\left( a{{t}^{2}},2at \right)\] and \[\left( 2a+a{{t}^{2}},0 \right)\].
Now, we know that the coordinates of the midpoint of the line joining two points \[\left( {{x}_{1}},{{y}_{1}} \right)\] and \[\left( {{x}_{2}},{{y}_{2}} \right)\] is given as: \[\left( \dfrac{{{x}_{1}}+{{x}_{2}}}{2},\dfrac{{{y}_{1}}+{{y}_{2}}}{2} \right)\]
So, the coordinates of the midpoint are
\[\left( \dfrac{a{{t}^{2}}+2a+a{{t}^{2}}}{2},\dfrac{2at+0}{2} \right)\]
\[=\left( a{{t}^{2}}+a,at \right)...\left( iv \right)\]
So, from \[\left( iii \right)\]and \[\left( iv \right)\], we can say
\[h=a{{t}^{2}}+a....\left( v \right)\], \[k=at\]
Now, \[k=at\]\[\Rightarrow t=\dfrac{k}{a}...\left( vi \right)\]
Substituting \[t=\dfrac{k}{a}\]in \[\left( v \right)\], we get
\[h=a{{\left( \dfrac{k}{a} \right)}^{2}}+a\]
\[\Rightarrow h=\dfrac{{{k}^{2}}}{a}+a\]
\[\Rightarrow {{k}^{2}}=ah-{{a}^{2}}........\] equation\[(vii)\]
Now , to get the equation of the locus of \[\left( h,k \right)\], we will substitute \[(x,y)\] in place of \[\left( h,k \right)\] in equation\[(vii)\].
Or, \[{{y}^{2}}=a\left( x-a \right)....\left( viii \right)\] is the equation of the locus.
Now , we know the length of the latus rectum of \[{{y}^{2}}=4ax\] is \[4a\].
Now , the length of latus rectum of parabola given by equation \[\left( vii \right)\]is \[4\times \dfrac{a}{4}=a\]
Also, the vertex of \[\left( viii \right)\] is \[\left( a,0 \right)\] which is the focus of \[{{y}^{2}}=4ax\]
Hence , the length of the latus rectum of the locus is one quarter of the original parabola and the vertex of the locus is the focus of the original parabola .
Note: Length of latus rectum of parabola \[{{y}^{2}}=4ax\] is equal to \[4a\] and not \[a\].
Focus of parabola \[{{y}^{2}}=4ax\] is \[\left( a,0 \right)\] and not \[(4a,0)\].
Students generally get confused and make mistakes which results in wrong answers. So , such mistakes should be avoided .
Recently Updated Pages
Arithmetic, Geometric & Harmonic Progressions Explained

Cartesian Form of Vector Explained: Formula, Examples & Uses

Apparent Frequency Explained: Formula, Uses & Examples

Calorimetry: Definition, Principles & Calculations

Centrifugal Force Explained: Definition, Formula & Examples

Charge in a Magnetic Field: Definition, Formula & Examples

Trending doubts
Understanding Collisions: Types and Examples for Students

Ideal and Non-Ideal Solutions Explained for Class 12 Chemistry

Degree of Dissociation: Meaning, Formula, Calculation & Uses

Understanding Elastic Collisions in Two Dimensions

Understanding Newton’s Laws of Motion

JEE Main 2026 Syllabus Updated for Physics, Chemistry and Mathematics

Other Pages
NCERT Solutions For Class 11 Maths Chapter 11 Introduction To Three Dimensional Geometry - 2025-26

Inertial and Non-Inertial Frame of Reference Explained

Clemmensen and Wolff Kishner Reductions Explained for JEE & NEET

JEE Main 2023 January 29th Shift 2 Physics Question Paper with Answer Keys and Solutions

Devuthani Ekadashi 2025: Correct Date, Shubh Muhurat, Parana Time & Puja Vidhi

Quadratic Equation Questions with Solutions & PDF Practice Sets

