
Prove that the locus of the middle point of a portion of a normal intersected between the curve and the axis is a parabola whose vertex is the focus and whose latus rectum is one quarter of the original parabola.
Answer
214.2k+ views
Hint: The equation of normal in parametric form is given as \[y=-tx+2at+a{{t}^{3}}\], where the normal is drawn at a point \[P\] with parameter \[t\].
First of all , let’s take the equation of the parabola to be \[{{y}^{2}}=4ax\].

Coordinates of any point on the parabola in parametric form is given as \[P\left( a{{t}^{2}},2at \right)\].
We know, equation of normal in parametric form , where the normal is drawn at a point \[P\] with parameter \[t\], is given as
\[y=-tx+2at+a{{t}^{3}}....\left( i \right)\]
Also, the equation of axis of the parabola is
\[y=0.....\left( ii \right)\]
To find the points of intersection of \[\left( i \right)\]and\[\left( ii \right)\], we substitute \[y=0\] in \[\left( i \right)\].
So, \[0=-tx+2at+{{t}^{3}}\]
\[\Rightarrow x=2a+a{{t}^{2}}\]
So , the point of intersection of the axis and the normal is \[\left( 2a+a{{t}^{2}},0 \right)\].
Now , let the midpoint of intercepted portion be \[\left( h,k \right).....\left( iii \right)\]
But we also know that the extremities of the intercepted portion are \[\left( a{{t}^{2}},2at \right)\] and \[\left( 2a+a{{t}^{2}},0 \right)\].
Now, we know that the coordinates of the midpoint of the line joining two points \[\left( {{x}_{1}},{{y}_{1}} \right)\] and \[\left( {{x}_{2}},{{y}_{2}} \right)\] is given as: \[\left( \dfrac{{{x}_{1}}+{{x}_{2}}}{2},\dfrac{{{y}_{1}}+{{y}_{2}}}{2} \right)\]
So, the coordinates of the midpoint are
\[\left( \dfrac{a{{t}^{2}}+2a+a{{t}^{2}}}{2},\dfrac{2at+0}{2} \right)\]
\[=\left( a{{t}^{2}}+a,at \right)...\left( iv \right)\]
So, from \[\left( iii \right)\]and \[\left( iv \right)\], we can say
\[h=a{{t}^{2}}+a....\left( v \right)\], \[k=at\]
Now, \[k=at\]\[\Rightarrow t=\dfrac{k}{a}...\left( vi \right)\]
Substituting \[t=\dfrac{k}{a}\]in \[\left( v \right)\], we get
\[h=a{{\left( \dfrac{k}{a} \right)}^{2}}+a\]
\[\Rightarrow h=\dfrac{{{k}^{2}}}{a}+a\]
\[\Rightarrow {{k}^{2}}=ah-{{a}^{2}}........\] equation\[(vii)\]
Now , to get the equation of the locus of \[\left( h,k \right)\], we will substitute \[(x,y)\] in place of \[\left( h,k \right)\] in equation\[(vii)\].
Or, \[{{y}^{2}}=a\left( x-a \right)....\left( viii \right)\] is the equation of the locus.
Now , we know the length of the latus rectum of \[{{y}^{2}}=4ax\] is \[4a\].
Now , the length of latus rectum of parabola given by equation \[\left( vii \right)\]is \[4\times \dfrac{a}{4}=a\]
Also, the vertex of \[\left( viii \right)\] is \[\left( a,0 \right)\] which is the focus of \[{{y}^{2}}=4ax\]
Hence , the length of the latus rectum of the locus is one quarter of the original parabola and the vertex of the locus is the focus of the original parabola .
Note: Length of latus rectum of parabola \[{{y}^{2}}=4ax\] is equal to \[4a\] and not \[a\].
Focus of parabola \[{{y}^{2}}=4ax\] is \[\left( a,0 \right)\] and not \[(4a,0)\].
Students generally get confused and make mistakes which results in wrong answers. So , such mistakes should be avoided .
First of all , let’s take the equation of the parabola to be \[{{y}^{2}}=4ax\].

Coordinates of any point on the parabola in parametric form is given as \[P\left( a{{t}^{2}},2at \right)\].
We know, equation of normal in parametric form , where the normal is drawn at a point \[P\] with parameter \[t\], is given as
\[y=-tx+2at+a{{t}^{3}}....\left( i \right)\]
Also, the equation of axis of the parabola is
\[y=0.....\left( ii \right)\]
To find the points of intersection of \[\left( i \right)\]and\[\left( ii \right)\], we substitute \[y=0\] in \[\left( i \right)\].
So, \[0=-tx+2at+{{t}^{3}}\]
\[\Rightarrow x=2a+a{{t}^{2}}\]
So , the point of intersection of the axis and the normal is \[\left( 2a+a{{t}^{2}},0 \right)\].
Now , let the midpoint of intercepted portion be \[\left( h,k \right).....\left( iii \right)\]
But we also know that the extremities of the intercepted portion are \[\left( a{{t}^{2}},2at \right)\] and \[\left( 2a+a{{t}^{2}},0 \right)\].
Now, we know that the coordinates of the midpoint of the line joining two points \[\left( {{x}_{1}},{{y}_{1}} \right)\] and \[\left( {{x}_{2}},{{y}_{2}} \right)\] is given as: \[\left( \dfrac{{{x}_{1}}+{{x}_{2}}}{2},\dfrac{{{y}_{1}}+{{y}_{2}}}{2} \right)\]
So, the coordinates of the midpoint are
\[\left( \dfrac{a{{t}^{2}}+2a+a{{t}^{2}}}{2},\dfrac{2at+0}{2} \right)\]
\[=\left( a{{t}^{2}}+a,at \right)...\left( iv \right)\]
So, from \[\left( iii \right)\]and \[\left( iv \right)\], we can say
\[h=a{{t}^{2}}+a....\left( v \right)\], \[k=at\]
Now, \[k=at\]\[\Rightarrow t=\dfrac{k}{a}...\left( vi \right)\]
Substituting \[t=\dfrac{k}{a}\]in \[\left( v \right)\], we get
\[h=a{{\left( \dfrac{k}{a} \right)}^{2}}+a\]
\[\Rightarrow h=\dfrac{{{k}^{2}}}{a}+a\]
\[\Rightarrow {{k}^{2}}=ah-{{a}^{2}}........\] equation\[(vii)\]
Now , to get the equation of the locus of \[\left( h,k \right)\], we will substitute \[(x,y)\] in place of \[\left( h,k \right)\] in equation\[(vii)\].
Or, \[{{y}^{2}}=a\left( x-a \right)....\left( viii \right)\] is the equation of the locus.
Now , we know the length of the latus rectum of \[{{y}^{2}}=4ax\] is \[4a\].
Now , the length of latus rectum of parabola given by equation \[\left( vii \right)\]is \[4\times \dfrac{a}{4}=a\]
Also, the vertex of \[\left( viii \right)\] is \[\left( a,0 \right)\] which is the focus of \[{{y}^{2}}=4ax\]
Hence , the length of the latus rectum of the locus is one quarter of the original parabola and the vertex of the locus is the focus of the original parabola .
Note: Length of latus rectum of parabola \[{{y}^{2}}=4ax\] is equal to \[4a\] and not \[a\].
Focus of parabola \[{{y}^{2}}=4ax\] is \[\left( a,0 \right)\] and not \[(4a,0)\].
Students generally get confused and make mistakes which results in wrong answers. So , such mistakes should be avoided .
Recently Updated Pages
Chemical Equation - Important Concepts and Tips for JEE

JEE Main 2022 (July 29th Shift 1) Chemistry Question Paper with Answer Key

Conduction, Transfer of Energy Important Concepts and Tips for JEE

JEE Analytical Method of Vector Addition Important Concepts and Tips

Atomic Size - Important Concepts and Tips for JEE

JEE Main 2022 (June 29th Shift 1) Maths Question Paper with Answer Key

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

JEE Main Correction Window 2026 Session 1 Dates Announced - Edit Form Details, Dates and Link

Equation of Trajectory in Projectile Motion: Derivation & Proof

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

Hybridisation in Chemistry – Concept, Types & Applications

Angle of Deviation in a Prism – Formula, Diagram & Applications

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions for Class 11 Maths Chapter 10 Conic Sections

NCERT Solutions for Class 11 Maths Chapter 9 Straight Lines

NCERT Solutions For Class 11 Maths Chapter 8 Sequences And Series

Collision: Meaning, Types & Examples in Physics

How to Convert a Galvanometer into an Ammeter or Voltmeter

