Prove that \[\dfrac{{\tan \,\theta }}{{1\, - \,\cot \,\theta }}\, + \,\dfrac{{\cot \,\theta }}{{1\, - \,\tan \,\theta }}\, = \,1\, + \,\sec \,\theta \,\cos ec\,\theta \].
Answer
Verified
119.4k+ views
Hint: Split the equation as LHS and RHS to prove that the given equation is true. Initially solve the left-hand side equation. By solving the left-hand side, at the final stage the assumed Right-hand side will be the answer of the solved LHS.
Useful Formula:
Use the trigonometric formula for $\tan \,\theta $and $\cot \,\theta $, that is $\tan \,\theta \, = \,\dfrac{{\sin \,\theta }}{{\cos \,\theta }}$ and $\cot \,\theta \, = \,\dfrac{{\cos \,\theta }}{{\sin \,\theta }}$.
Another simplification of $\tan \,\theta $ is $\tan \,\theta \, = \,\dfrac{1}{{\cot \,\theta }}$ and the simplification of $\cot \,\theta \, = \,\dfrac{1}{{\tan \,\theta }}$. The formula for the reciprocal of $\sin \,\theta $ and $\cos \,\theta $ is $\dfrac{1}{{\sin \,\theta }}\, = \,\cos ec\,\theta $ and $\dfrac{1}{{\cos \,\theta }}\, = \,\sec \,\theta $.
Complete step by step solution:
Given that \[\dfrac{{\tan \,\theta }}{{1\, - \,\cot \,\theta }}\, + \,\dfrac{{\cot \,\theta }}{{1\, - \,\tan \,\theta }}\, = \,1\, + \,\sec \,\theta \,\cos ec\,\theta \] and We want to prove it.
To prove the given equation is correct, we initially split the equation by two parts as left hand side and right-hand side.
LHS $ = \,\dfrac{{\tan \,\theta }}{{1\, - \,\cot \,\theta }}\, + \,\dfrac{{\cot \,\theta }}{{1\, - \,\tan \,\theta }}$
RHS $ = 1\, + \,\sec \,\theta \,\cos ec\,\theta $
We want to prove that LHS = RHS.
Initially solve the Left-hand side assumed part equation:
LHS \[ = \dfrac{{\tan \,\theta }}{{1\, - \,\cot \,\theta }}\, + \,\dfrac{{\cot \,\theta }}{{1\, - \,\tan \,\theta }}\,\]
By using the formula $\tan \,\theta \, = \,\dfrac{{\sin \,\theta }}{{\cos \,\theta }}$, substitute the formula in the above equation:
\[\dfrac{{\tan \,\theta }}{{1\, - \,\cot \,\theta }}\, + \,\dfrac{{\cot \,\theta }}{{1\, - \,\tan \,\theta }}\, = \,\dfrac{{\dfrac{{\sin \,\theta }}{{\cos \,\theta }}}}{{1\, - \,\cot \,\theta }}\, + \,\dfrac{{\cot \,\theta }}{{1\, - \,\dfrac{{\sin \,\theta }}{{\cos \,\theta }}}}\]
As like $\tan \,\theta $, substitute the value of $\cot \,\theta $ as $\cot \,\theta \, = \,\dfrac{{\cos \,\theta }}{{\sin \,\theta }}$
\[\dfrac{{\tan \,\theta }}{{1\, - \,\cot \,\theta }}\, + \,\dfrac{{\cot \,\theta }}{{1\, - \,\tan \,\theta }}\, = \,\dfrac{{\dfrac{{\sin \,\theta }}{{\cos \,\theta }}}}{{1\, - \,\dfrac{{\cos \,\theta }}{{\sin \,\theta }}}}\, + \,\dfrac{{\dfrac{{\cos \,\theta }}{{\sin \,\theta }}}}{{1\, - \,\dfrac{{\sin \,\theta }}{{\cos \,\theta }}}}\]
Taking LCM to $1\, - \,\dfrac{{\cos \,\theta }}{{\sin \,\theta }}\,$,
\[\dfrac{{\tan \,\theta }}{{1\, - \,\cot \,\theta }}\, + \,\dfrac{{\cot \,\theta }}{{1\, - \,\tan \,\theta }}\, = \,\dfrac{{\dfrac{{\sin \,\theta }}{{\cos \,\theta }}}}{{\dfrac{{\sin \,\theta \, - \,\cos \,\theta }}{{\sin \,\theta }}}}\, + \,\dfrac{{\dfrac{{\cos \,\theta }}{{\sin \,\theta }}}}{{1\, - \,\dfrac{{\sin \,\theta }}{{\cos \,\theta }}}}\]
Similar that, take LCM to $1\, - \,\dfrac{{\sin \,\theta }}{{\cos \,\theta }}$
\[\dfrac{{\tan \,\theta }}{{1\, - \,\cot \,\theta }}\, + \,\dfrac{{\cot \,\theta }}{{1\, - \,\tan \,\theta }}\, = \,\dfrac{{\dfrac{{\sin \,\theta }}{{\cos \,\theta }}}}{{\dfrac{{\sin \,\theta \, - \,\cos \,\theta }}{{\sin \,\theta }}}}\, + \,\dfrac{{\dfrac{{\cos \,\theta }}{{\sin \,\theta }}}}{{\dfrac{{\cos \,\theta \, - \,\sin \,\theta }}{{\cos \,\theta }}}}\]
The denominator of $\dfrac{{\sin \,\theta \, - \,\cos \,\theta }}{{\sin \,\theta }}$ becomes the reciprocal of the denominator, when it comes to nominator:
\[\dfrac{{\tan \,\theta }}{{1\, - \,\cot \,\theta }}\, + \,\dfrac{{\cot \,\theta }}{{1\, - \,\tan \,\theta }}\, = \,\dfrac{{\sin \,\theta }}{{\cos \,\theta }}\, \times \,\dfrac{{\sin \,\theta }}{{\sin \,\theta \, - \,\cos \,\theta }}\, + \,\dfrac{{\cos \,\theta }}{{\sin \,\theta }}\, \times \,\dfrac{{\cos \,\theta }}{{\cos \,\theta \, - \,\sin \,\theta }}\]
To simplify, multiply the equation as possible,
\[\dfrac{{\tan \,\theta }}{{1\, - \,\cot \,\theta }}\, + \,\dfrac{{\cot \,\theta }}{{1\, - \,\tan \,\theta }}\, = \,\,\dfrac{{{{\sin }^2}\theta }}{{\cos \,\theta (\sin \,\theta \, - \,\cos \,\theta )}}\, + \,\,\,\dfrac{{\cos {\,^2}\theta }}{{\sin \,\theta (\cos \,\theta \, - \,\sin \,\theta )}}\]
Change the $\cos \,\theta \, - \,\sin \,\theta $into $\sin \,\theta \, - \,\cos \,\theta $by adding the negative sign in it:
The equation becomes as follows:
\[\dfrac{{\tan \,\theta }}{{1\, - \,\cot \,\theta }}\, + \,\dfrac{{\cot \,\theta }}{{1\, - \,\tan \,\theta }}\, = \,\,\dfrac{{{{\sin }^2}\theta }}{{\cos \,\theta (\sin \,\theta \, - \,\cos \,\theta )}}\, - \,\dfrac{{\cos {\,^2}\theta }}{{\sin \,\theta (\sin \,\theta \, - \,\cos \,\theta )}}\]
By taking out the common parts from the equation as follows:
\[\dfrac{{\tan \,\theta }}{{1\, - \,\cot \,\theta }}\, + \,\dfrac{{\cot \,\theta }}{{1\, - \,\tan \,\theta }}\, = \,\dfrac{1}{{\sin \,\theta \, - \,\cos \,\theta }}\,(\dfrac{{{{\sin }^2}\theta }}{{\cos \,\theta }}\, - \,\dfrac{{\cos {\,^2}\theta }}{{\sin \,\theta }})\]
Take the LCM to the above equation except common equation:
The equation should be as follows:
\[\dfrac{{\tan \,\theta }}{{1\, - \,\cot \,\theta }}\, + \,\dfrac{{\cot \,\theta }}{{1\, - \,\tan \,\theta }}\, = \,\dfrac{1}{{\sin \,\theta \, - \,\cos \,\theta }}\,(\dfrac{{{{\sin }^3}\theta \, - \,\,{{\cos }^3}\,\theta }}{{\cos \,\theta \,\sin \,\theta }})\]
Substitute the formula for ${\sin ^3}\theta \, - \,{\cos ^3}\theta $ to the above equation.
The formula is ${\sin ^3}\theta \, - \,{\cos ^3}\theta \, = \,\dfrac{{(\sin \theta \, - \,\cos \,\theta )({{\sin }^2}\theta + {{\cos }^2}\theta + \sin \theta \cos \theta )}}{{\cos \theta \,\sin \theta }}$:
\[\dfrac{{\tan \theta }}{{1\, - \,\cot \,\theta }}\, + \,\dfrac{{\cot \,\theta }}{{1\, - \,\tan \,\theta }}\, = \,\dfrac{1}{{\sin \,\theta \, - \,\cos \,\theta }}\,\dfrac{{(\sin \theta \, - \,\cos \,\theta )({{\sin }^2}\theta + {{\cos }^2}\theta + \sin \theta \cos \theta )}}{{\cos \theta \,\sin \theta }}\]
Substitute the value of ${\sin ^2}\theta + {\cos ^2}\theta $ as $1$ in above equation:
\[\dfrac{{\tan \theta }}{{1\, - \,\cot \,\theta }}\, + \,\dfrac{{\cot \,\theta }}{{1\, - \,\tan \,\theta }}\, = \,\dfrac{1}{{\sin \,\theta \, - \,\cos \,\theta }}\,\dfrac{{(\sin \theta \, - \,\cos \,\theta )(1 + \sin \theta \cos \theta )}}{{\cos \theta \,\sin \theta }}\]
Now cancel the common parts from both numerator and denominator, then the equation become as follows:
\[\dfrac{{\tan \theta }}{{1\, - \,\cot \,\theta }}\, + \,\dfrac{{\cot \,\theta }}{{1\, - \,\tan \,\theta }}\, = \dfrac{{(1 + \sin \theta \cos \theta )}}{{\cos \theta \,\sin \theta }}\]
Splitting the above equation in two parts:
\[\dfrac{{\tan \theta }}{{1\, - \,\cot \,\theta }}\, + \,\dfrac{{\cot \,\theta }}{{1\, - \,\tan \,\theta }}\, = \dfrac{1}{{\cos \,\theta \sin \,\theta }} + \dfrac{{\sin \theta \cos \theta }}{{\cos \theta \,\sin \theta }}\]
Cancel the common parts from both numerator and denominator in above equation as follows:
\[\dfrac{{\tan \theta }}{{1\, - \,\cot \,\theta }}\, + \,\dfrac{{\cot \,\theta }}{{1\, - \,\tan \,\theta }}\, = \dfrac{1}{{\cos \,\theta \sin \,\theta }}\, + \,1\]
Splitting the right-hand side equation in again two parts as follows:
\[\dfrac{{\tan \theta }}{{1\, - \,\cot \,\theta }}\, + \,\dfrac{{\cot \,\theta }}{{1\, - \,\tan \,\theta }}\, = \dfrac{1}{{\cos \,\theta }}\,\dfrac{1}{{\sin \,\theta }}\, + \,1\]
Now substitute the value of reciprocal value of $\cos \theta $and $\sin \theta $in above equation as follows:
Since $\dfrac{1}{{\sin \,\theta }}\, = \,\cos ec\,\theta \,\,\dfrac{1}{{\cos \,\theta }}\, = \,\sec \,\theta $in the equation:
\[\dfrac{{\tan \theta }}{{1\, - \,\cot \,\theta }}\, + \,\dfrac{{\cot \,\theta }}{{1\, - \,\tan \,\theta }} = \sec \theta \cos ec\theta \, + \,1\]
By simplifying the Left-hand side, we obtain the Right-hand side.
We proved that the given equation is correct.
\[\dfrac{{\tan \theta }}{{1\, - \,\cot \,\theta }}\, + \,\dfrac{{\cot \,\theta }}{{1\, - \,\tan \,\theta }} = \cos ec\,\theta \sec \,\theta \, + \,1\] is proved.
Note: Only take the LCM to the applicable places and use the formula only in needed places. Be aware that changing the equation like $(\cos \theta \, - \,\sin \theta )$will become $ - \,(\sin \theta \, - \,\cos \,\theta )$. Don’t forget to put the negative sign.
Useful Formula:
Use the trigonometric formula for $\tan \,\theta $and $\cot \,\theta $, that is $\tan \,\theta \, = \,\dfrac{{\sin \,\theta }}{{\cos \,\theta }}$ and $\cot \,\theta \, = \,\dfrac{{\cos \,\theta }}{{\sin \,\theta }}$.
Another simplification of $\tan \,\theta $ is $\tan \,\theta \, = \,\dfrac{1}{{\cot \,\theta }}$ and the simplification of $\cot \,\theta \, = \,\dfrac{1}{{\tan \,\theta }}$. The formula for the reciprocal of $\sin \,\theta $ and $\cos \,\theta $ is $\dfrac{1}{{\sin \,\theta }}\, = \,\cos ec\,\theta $ and $\dfrac{1}{{\cos \,\theta }}\, = \,\sec \,\theta $.
Complete step by step solution:
Given that \[\dfrac{{\tan \,\theta }}{{1\, - \,\cot \,\theta }}\, + \,\dfrac{{\cot \,\theta }}{{1\, - \,\tan \,\theta }}\, = \,1\, + \,\sec \,\theta \,\cos ec\,\theta \] and We want to prove it.
To prove the given equation is correct, we initially split the equation by two parts as left hand side and right-hand side.
LHS $ = \,\dfrac{{\tan \,\theta }}{{1\, - \,\cot \,\theta }}\, + \,\dfrac{{\cot \,\theta }}{{1\, - \,\tan \,\theta }}$
RHS $ = 1\, + \,\sec \,\theta \,\cos ec\,\theta $
We want to prove that LHS = RHS.
Initially solve the Left-hand side assumed part equation:
LHS \[ = \dfrac{{\tan \,\theta }}{{1\, - \,\cot \,\theta }}\, + \,\dfrac{{\cot \,\theta }}{{1\, - \,\tan \,\theta }}\,\]
By using the formula $\tan \,\theta \, = \,\dfrac{{\sin \,\theta }}{{\cos \,\theta }}$, substitute the formula in the above equation:
\[\dfrac{{\tan \,\theta }}{{1\, - \,\cot \,\theta }}\, + \,\dfrac{{\cot \,\theta }}{{1\, - \,\tan \,\theta }}\, = \,\dfrac{{\dfrac{{\sin \,\theta }}{{\cos \,\theta }}}}{{1\, - \,\cot \,\theta }}\, + \,\dfrac{{\cot \,\theta }}{{1\, - \,\dfrac{{\sin \,\theta }}{{\cos \,\theta }}}}\]
As like $\tan \,\theta $, substitute the value of $\cot \,\theta $ as $\cot \,\theta \, = \,\dfrac{{\cos \,\theta }}{{\sin \,\theta }}$
\[\dfrac{{\tan \,\theta }}{{1\, - \,\cot \,\theta }}\, + \,\dfrac{{\cot \,\theta }}{{1\, - \,\tan \,\theta }}\, = \,\dfrac{{\dfrac{{\sin \,\theta }}{{\cos \,\theta }}}}{{1\, - \,\dfrac{{\cos \,\theta }}{{\sin \,\theta }}}}\, + \,\dfrac{{\dfrac{{\cos \,\theta }}{{\sin \,\theta }}}}{{1\, - \,\dfrac{{\sin \,\theta }}{{\cos \,\theta }}}}\]
Taking LCM to $1\, - \,\dfrac{{\cos \,\theta }}{{\sin \,\theta }}\,$,
\[\dfrac{{\tan \,\theta }}{{1\, - \,\cot \,\theta }}\, + \,\dfrac{{\cot \,\theta }}{{1\, - \,\tan \,\theta }}\, = \,\dfrac{{\dfrac{{\sin \,\theta }}{{\cos \,\theta }}}}{{\dfrac{{\sin \,\theta \, - \,\cos \,\theta }}{{\sin \,\theta }}}}\, + \,\dfrac{{\dfrac{{\cos \,\theta }}{{\sin \,\theta }}}}{{1\, - \,\dfrac{{\sin \,\theta }}{{\cos \,\theta }}}}\]
Similar that, take LCM to $1\, - \,\dfrac{{\sin \,\theta }}{{\cos \,\theta }}$
\[\dfrac{{\tan \,\theta }}{{1\, - \,\cot \,\theta }}\, + \,\dfrac{{\cot \,\theta }}{{1\, - \,\tan \,\theta }}\, = \,\dfrac{{\dfrac{{\sin \,\theta }}{{\cos \,\theta }}}}{{\dfrac{{\sin \,\theta \, - \,\cos \,\theta }}{{\sin \,\theta }}}}\, + \,\dfrac{{\dfrac{{\cos \,\theta }}{{\sin \,\theta }}}}{{\dfrac{{\cos \,\theta \, - \,\sin \,\theta }}{{\cos \,\theta }}}}\]
The denominator of $\dfrac{{\sin \,\theta \, - \,\cos \,\theta }}{{\sin \,\theta }}$ becomes the reciprocal of the denominator, when it comes to nominator:
\[\dfrac{{\tan \,\theta }}{{1\, - \,\cot \,\theta }}\, + \,\dfrac{{\cot \,\theta }}{{1\, - \,\tan \,\theta }}\, = \,\dfrac{{\sin \,\theta }}{{\cos \,\theta }}\, \times \,\dfrac{{\sin \,\theta }}{{\sin \,\theta \, - \,\cos \,\theta }}\, + \,\dfrac{{\cos \,\theta }}{{\sin \,\theta }}\, \times \,\dfrac{{\cos \,\theta }}{{\cos \,\theta \, - \,\sin \,\theta }}\]
To simplify, multiply the equation as possible,
\[\dfrac{{\tan \,\theta }}{{1\, - \,\cot \,\theta }}\, + \,\dfrac{{\cot \,\theta }}{{1\, - \,\tan \,\theta }}\, = \,\,\dfrac{{{{\sin }^2}\theta }}{{\cos \,\theta (\sin \,\theta \, - \,\cos \,\theta )}}\, + \,\,\,\dfrac{{\cos {\,^2}\theta }}{{\sin \,\theta (\cos \,\theta \, - \,\sin \,\theta )}}\]
Change the $\cos \,\theta \, - \,\sin \,\theta $into $\sin \,\theta \, - \,\cos \,\theta $by adding the negative sign in it:
The equation becomes as follows:
\[\dfrac{{\tan \,\theta }}{{1\, - \,\cot \,\theta }}\, + \,\dfrac{{\cot \,\theta }}{{1\, - \,\tan \,\theta }}\, = \,\,\dfrac{{{{\sin }^2}\theta }}{{\cos \,\theta (\sin \,\theta \, - \,\cos \,\theta )}}\, - \,\dfrac{{\cos {\,^2}\theta }}{{\sin \,\theta (\sin \,\theta \, - \,\cos \,\theta )}}\]
By taking out the common parts from the equation as follows:
\[\dfrac{{\tan \,\theta }}{{1\, - \,\cot \,\theta }}\, + \,\dfrac{{\cot \,\theta }}{{1\, - \,\tan \,\theta }}\, = \,\dfrac{1}{{\sin \,\theta \, - \,\cos \,\theta }}\,(\dfrac{{{{\sin }^2}\theta }}{{\cos \,\theta }}\, - \,\dfrac{{\cos {\,^2}\theta }}{{\sin \,\theta }})\]
Take the LCM to the above equation except common equation:
The equation should be as follows:
\[\dfrac{{\tan \,\theta }}{{1\, - \,\cot \,\theta }}\, + \,\dfrac{{\cot \,\theta }}{{1\, - \,\tan \,\theta }}\, = \,\dfrac{1}{{\sin \,\theta \, - \,\cos \,\theta }}\,(\dfrac{{{{\sin }^3}\theta \, - \,\,{{\cos }^3}\,\theta }}{{\cos \,\theta \,\sin \,\theta }})\]
Substitute the formula for ${\sin ^3}\theta \, - \,{\cos ^3}\theta $ to the above equation.
The formula is ${\sin ^3}\theta \, - \,{\cos ^3}\theta \, = \,\dfrac{{(\sin \theta \, - \,\cos \,\theta )({{\sin }^2}\theta + {{\cos }^2}\theta + \sin \theta \cos \theta )}}{{\cos \theta \,\sin \theta }}$:
\[\dfrac{{\tan \theta }}{{1\, - \,\cot \,\theta }}\, + \,\dfrac{{\cot \,\theta }}{{1\, - \,\tan \,\theta }}\, = \,\dfrac{1}{{\sin \,\theta \, - \,\cos \,\theta }}\,\dfrac{{(\sin \theta \, - \,\cos \,\theta )({{\sin }^2}\theta + {{\cos }^2}\theta + \sin \theta \cos \theta )}}{{\cos \theta \,\sin \theta }}\]
Substitute the value of ${\sin ^2}\theta + {\cos ^2}\theta $ as $1$ in above equation:
\[\dfrac{{\tan \theta }}{{1\, - \,\cot \,\theta }}\, + \,\dfrac{{\cot \,\theta }}{{1\, - \,\tan \,\theta }}\, = \,\dfrac{1}{{\sin \,\theta \, - \,\cos \,\theta }}\,\dfrac{{(\sin \theta \, - \,\cos \,\theta )(1 + \sin \theta \cos \theta )}}{{\cos \theta \,\sin \theta }}\]
Now cancel the common parts from both numerator and denominator, then the equation become as follows:
\[\dfrac{{\tan \theta }}{{1\, - \,\cot \,\theta }}\, + \,\dfrac{{\cot \,\theta }}{{1\, - \,\tan \,\theta }}\, = \dfrac{{(1 + \sin \theta \cos \theta )}}{{\cos \theta \,\sin \theta }}\]
Splitting the above equation in two parts:
\[\dfrac{{\tan \theta }}{{1\, - \,\cot \,\theta }}\, + \,\dfrac{{\cot \,\theta }}{{1\, - \,\tan \,\theta }}\, = \dfrac{1}{{\cos \,\theta \sin \,\theta }} + \dfrac{{\sin \theta \cos \theta }}{{\cos \theta \,\sin \theta }}\]
Cancel the common parts from both numerator and denominator in above equation as follows:
\[\dfrac{{\tan \theta }}{{1\, - \,\cot \,\theta }}\, + \,\dfrac{{\cot \,\theta }}{{1\, - \,\tan \,\theta }}\, = \dfrac{1}{{\cos \,\theta \sin \,\theta }}\, + \,1\]
Splitting the right-hand side equation in again two parts as follows:
\[\dfrac{{\tan \theta }}{{1\, - \,\cot \,\theta }}\, + \,\dfrac{{\cot \,\theta }}{{1\, - \,\tan \,\theta }}\, = \dfrac{1}{{\cos \,\theta }}\,\dfrac{1}{{\sin \,\theta }}\, + \,1\]
Now substitute the value of reciprocal value of $\cos \theta $and $\sin \theta $in above equation as follows:
Since $\dfrac{1}{{\sin \,\theta }}\, = \,\cos ec\,\theta \,\,\dfrac{1}{{\cos \,\theta }}\, = \,\sec \,\theta $in the equation:
\[\dfrac{{\tan \theta }}{{1\, - \,\cot \,\theta }}\, + \,\dfrac{{\cot \,\theta }}{{1\, - \,\tan \,\theta }} = \sec \theta \cos ec\theta \, + \,1\]
By simplifying the Left-hand side, we obtain the Right-hand side.
We proved that the given equation is correct.
\[\dfrac{{\tan \theta }}{{1\, - \,\cot \,\theta }}\, + \,\dfrac{{\cot \,\theta }}{{1\, - \,\tan \,\theta }} = \cos ec\,\theta \sec \,\theta \, + \,1\] is proved.
Note: Only take the LCM to the applicable places and use the formula only in needed places. Be aware that changing the equation like $(\cos \theta \, - \,\sin \theta )$will become $ - \,(\sin \theta \, - \,\cos \,\theta )$. Don’t forget to put the negative sign.
Recently Updated Pages
Difference Between Mutually Exclusive and Independent Events
Difference Between Area and Volume
JEE Main Participating Colleges 2024 - A Complete List of Top Colleges
JEE Main Maths Paper Pattern 2025 – Marking, Sections & Tips
Sign up for JEE Main 2025 Live Classes - Vedantu
JEE Main 2025 Helpline Numbers - Center Contact, Phone Number, Address
Trending doubts
JEE Main 2025: Application Form (Out), Exam Dates (Released), Eligibility & More
JEE Main Login 2045: Step-by-Step Instructions and Details
JEE Main Chemistry Question Paper with Answer Keys and Solutions
JEE Main Exam Marking Scheme: Detailed Breakdown of Marks and Negative Marking
Learn About Angle Of Deviation In Prism: JEE Main Physics 2025
JEE Main 2025: Conversion of Galvanometer Into Ammeter And Voltmeter in Physics
Other Pages
NCERT Solutions for Class 11 Maths Chapter 9 Straight Lines
NCERT Solutions for Class 11 Maths Chapter 8 Sequences and Series
NCERT Solutions for Class 11 Maths Chapter 10 Conic Sections
NCERT Solutions for Class 11 Maths Chapter 13 Statistics
NCERT Solutions for Class 11 Maths Chapter 12 Limits and Derivatives
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs