
What is produced in a rigid reflecting plane for displacement waves?
A) Beats
B) Node and antinode
C) Antinode
D) Node
Answer
205.5k+ views
Hint: When waves are propagating in the medium with time, it produces displacement on both sides of their direction of propagation. The maximum displacement of waves is called the amplitude. A vibrating rope tied toward one side will create a standing wave, the wave train, subsequent to showing up at the fixed finish of the rope, will be pondered back and superimposed itself as another train of waves in a similar plane. Due to obstruction between the two waves, the resultant abundance of the two waves will be the total of their individual amplitudes.
Complete step by step solution:
We present a figure of displacement wave in which consistently there are positions (N) along the rope, called nodes, at which there is no development by any means. There the two wave trains are consistently in resistance. On either side of a node is a vibrating antinode (A). The antinodes substitute toward uprooting with the goal that the rope at any moment takes after a diagram of the numerical capacity called the sine function.

Hence it is clear that when a displacement wave incident at a rigid reflecting surface, makes Nodes and Antinodes. The mode of vibration in the waves depends on the number of nodes and antinodes formed.
Note: The best example of understanding of nodes and antinodes is open and closed organ pipes. Tied string is also an example of understanding nodes and antinodes. The expression of displacement/stationary wave in numeral form is –
\[y = 2a\cos( 2\pi x/\lambda) \sin (2\pi t/T)\]
Where \[x = \]displacement of wave in x-direction
\[\lambda = \] Wavelength of wave
\[t = \] Instant time
\[T = \] Time period of wave
Complete step by step solution:
We present a figure of displacement wave in which consistently there are positions (N) along the rope, called nodes, at which there is no development by any means. There the two wave trains are consistently in resistance. On either side of a node is a vibrating antinode (A). The antinodes substitute toward uprooting with the goal that the rope at any moment takes after a diagram of the numerical capacity called the sine function.

Hence it is clear that when a displacement wave incident at a rigid reflecting surface, makes Nodes and Antinodes. The mode of vibration in the waves depends on the number of nodes and antinodes formed.
Note: The best example of understanding of nodes and antinodes is open and closed organ pipes. Tied string is also an example of understanding nodes and antinodes. The expression of displacement/stationary wave in numeral form is –
\[y = 2a\cos( 2\pi x/\lambda) \sin (2\pi t/T)\]
Where \[x = \]displacement of wave in x-direction
\[\lambda = \] Wavelength of wave
\[t = \] Instant time
\[T = \] Time period of wave
Recently Updated Pages
JEE Mains Correction Window 2026- Session 1 and 2 Dates, Form Edit Link, Fee

JEE Main 2026 Marking Scheme- Marks Distribution, Negative and Total Marks

Chemical Equation - Important Concepts and Tips for JEE

JEE Main 2022 (July 29th Shift 1) Chemistry Question Paper with Answer Key

Conduction, Transfer of Energy Important Concepts and Tips for JEE

JEE Analytical Method of Vector Addition Important Concepts and Tips

Trending doubts
Ideal and Non-Ideal Solutions Explained for Class 12 Chemistry

Geostationary and Geosynchronous Satellites Explained

Charging and Discharging of Capacitor Explained

JEE Main 2025 Exam Pattern (Revised)

Photoelectric Effect and Stopping Potential: Concept, Formula & Exam Guide

JEE Main 2026 Session 1 Application Form Opening Soon – Important Dates & Details

Other Pages
JEE Advanced 2025: Dates, Registration, Syllabus, Eligibility Criteria and More

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Laws of Motion Class 11 Physics Chapter 4 CBSE Notes - 2025-26

NCERT Solutions For Class 11 Physics Chapter 10 Thermal Properties of Matter - 2025-26

JEE Advanced 2026 Revision Notes for Practical Organic Chemistry

Mechanical Properties of Fluids Class 11 Physics Chapter 9 CBSE Notes - 2025-26

