Answer
Verified
87k+ views
Hint Use the formula of the ideal gas equation, substitute the relation between the volume and the density in it. Solving it provides the value of the density. Find the same for the point $A$ and $B$ by substituting the temperature and the pressure at them.
Useful formul
(1) The formula of the ideal gas equation is given by
$PV = nRT$
Where $P$ is the pressure, $V$ is the volume, $n$ is the number of moles, $R$ is the gas constant and $T$ is the temperature.
(2) The relation between the two volume and the molar mass is given by
$\dfrac{n}{V} = \dfrac{d}{M}$
Where $d$ is the density of the gas and $M$ is the molar mass of the gas.
Complete step by step solution
Observe the diagram and analyze the value of the pressure and the temperature in the point $A$ and $B$ .
Let us write the ideal gas equation,
$PV = nRT$
Bring the volume to the right hand side of the equation, we get
$P = \dfrac{{nRT}}{V}$
Substituting the relation (2) in the above equation, we get
$P = \dfrac{d}{M}RT$
The density of the gas is found as
$d = \dfrac{{PM}}{{RT}}$ ------------(1)
Substituting the value of the temperature and the pressure at a point $A$,
$d = \dfrac{{{P_A}M}}{{R{T_A}}}$
Substituting the values,
${\rho _0} = \dfrac{{{P_0}M}}{{R{T_0}}}$ --------------(2)
Substituting the (1) with the value of the temperature and the pressure at a point $B$ ,
$d = \dfrac{{{P_B}M}}{{R{T_B}}}$
${d_B} = \dfrac{{3{P_0}M}}{{R2{T_0}}} = \dfrac{3}{2}{\rho _0}$ ---------------(3)
Thus the option (B) is correct.
Note Ideal gas equation is also known as the equation of the states, because this equation uses the variables in it to determine or explain about the state of the gas that is considered. This is mainly used to interconvert the volume with the molar mass.
Useful formul
(1) The formula of the ideal gas equation is given by
$PV = nRT$
Where $P$ is the pressure, $V$ is the volume, $n$ is the number of moles, $R$ is the gas constant and $T$ is the temperature.
(2) The relation between the two volume and the molar mass is given by
$\dfrac{n}{V} = \dfrac{d}{M}$
Where $d$ is the density of the gas and $M$ is the molar mass of the gas.
Complete step by step solution
Observe the diagram and analyze the value of the pressure and the temperature in the point $A$ and $B$ .
Let us write the ideal gas equation,
$PV = nRT$
Bring the volume to the right hand side of the equation, we get
$P = \dfrac{{nRT}}{V}$
Substituting the relation (2) in the above equation, we get
$P = \dfrac{d}{M}RT$
The density of the gas is found as
$d = \dfrac{{PM}}{{RT}}$ ------------(1)
Substituting the value of the temperature and the pressure at a point $A$,
$d = \dfrac{{{P_A}M}}{{R{T_A}}}$
Substituting the values,
${\rho _0} = \dfrac{{{P_0}M}}{{R{T_0}}}$ --------------(2)
Substituting the (1) with the value of the temperature and the pressure at a point $B$ ,
$d = \dfrac{{{P_B}M}}{{R{T_B}}}$
${d_B} = \dfrac{{3{P_0}M}}{{R2{T_0}}} = \dfrac{3}{2}{\rho _0}$ ---------------(3)
Thus the option (B) is correct.
Note Ideal gas equation is also known as the equation of the states, because this equation uses the variables in it to determine or explain about the state of the gas that is considered. This is mainly used to interconvert the volume with the molar mass.
Recently Updated Pages
Name the scale on which the destructive energy of an class 11 physics JEE_Main
Write an article on the need and importance of sports class 10 english JEE_Main
Choose the exact meaning of the given idiomphrase The class 9 english JEE_Main
Choose the one which best expresses the meaning of class 9 english JEE_Main
What does a hydrometer consist of A A cylindrical stem class 9 physics JEE_Main
A motorcyclist of mass m is to negotiate a curve of class 9 physics JEE_Main
Other Pages
A pilot in a plane wants to go 500km towards the north class 11 physics JEE_Main
A passenger in an aeroplane shall A Never see a rainbow class 12 physics JEE_Main
A circular hole of radius dfracR4 is made in a thin class 11 physics JEE_Main
The potential energy of a certain spring when stretched class 11 physics JEE_Main
The ratio of speed of sound in Hydrogen to that in class 11 physics JEE_MAIN
A roller of mass 300kg and of radius 50cm lying on class 12 physics JEE_Main