
Pressure of real gas is less that the pressure of ideal gas because:
A. Number of collisions increases
B. Define shape of molecule
C. Kinetic energy of molecules increases
D. Intermolecular forces
Answer
233.1k+ views
Hint: To answer the question, we should know what real gas and ideal gas are.
Real gas: “A real gas is a gas that does not behave as an ideal gas because of interactions between gas molecules”.
Idea gas: “The gas in which all collisions between atoms or molecules are perfectly elastic and in which there is no intermolecular force of attraction is called ideal gas”.
Complete step by step answer:
We know that for real gases
\[\left( P+\frac{a{{n}^{2}}}{{{V}^{2}}} \right)\left( V-nb \right)=nRT\]
a = intermolecular forces
b = total volume per mole occupied by the gas
n = number of moles of gas
P = Pressure
V = Volume
R = gas constant
T = Temperature
For ideal gas
\[\left( PV \right)=nRT\]
From the above equations it is clear that for real gases there is a role of intermolecular forces, but in case of ideal gas there are no intermolecular forces.
On observing the formula of real gases we can say that there is some amount of attraction between the gas molecules namely the van der waal forces.
These van der waal forces don't let the molecules hit the wall of the container with full force and gas molecules held back by these attractive forces. Due to these forces of attraction (intermolecular forces), real gases tend to show slightly less pressure as compared to ideal gasses.
So, the correct option is D.
Note: Real gases don’t obey all the gas laws at all temperature and pressure but ideal gas obeys all the laws at all temperatures and pressures. Real gases only obey all Gas Laws at high temperature and low pressure.
Real gas: “A real gas is a gas that does not behave as an ideal gas because of interactions between gas molecules”.
Idea gas: “The gas in which all collisions between atoms or molecules are perfectly elastic and in which there is no intermolecular force of attraction is called ideal gas”.
Complete step by step answer:
We know that for real gases
\[\left( P+\frac{a{{n}^{2}}}{{{V}^{2}}} \right)\left( V-nb \right)=nRT\]
a = intermolecular forces
b = total volume per mole occupied by the gas
n = number of moles of gas
P = Pressure
V = Volume
R = gas constant
T = Temperature
For ideal gas
\[\left( PV \right)=nRT\]
From the above equations it is clear that for real gases there is a role of intermolecular forces, but in case of ideal gas there are no intermolecular forces.
On observing the formula of real gases we can say that there is some amount of attraction between the gas molecules namely the van der waal forces.
These van der waal forces don't let the molecules hit the wall of the container with full force and gas molecules held back by these attractive forces. Due to these forces of attraction (intermolecular forces), real gases tend to show slightly less pressure as compared to ideal gasses.
So, the correct option is D.
Note: Real gases don’t obey all the gas laws at all temperature and pressure but ideal gas obeys all the laws at all temperatures and pressures. Real gases only obey all Gas Laws at high temperature and low pressure.
Recently Updated Pages
JEE Main 2023 April 6 Shift 1 Question Paper with Answer Key

JEE Main 2023 April 6 Shift 2 Question Paper with Answer Key

JEE Main 2023 (January 31 Evening Shift) Question Paper with Solutions [PDF]

JEE Main 2023 January 30 Shift 2 Question Paper with Answer Key

JEE Main 2023 January 25 Shift 1 Question Paper with Answer Key

JEE Main 2023 January 24 Shift 2 Question Paper with Answer Key

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Hydrocarbons Class 11 Chemistry Chapter 9 CBSE Notes - 2025-26

Thermodynamics Class 11 Chemistry Chapter 5 CBSE Notes - 2025-26

Equilibrium Class 11 Chemistry Chapter 6 CBSE Notes - 2025-26

Organic Chemistry Some Basic Principles And Techniques Class 11 Chemistry Chapter 8 CBSE Notes - 2025-26

NCERT Solutions For Class 11 Chemistry Chapter 7 Redox Reactions (2025-26)

