
What is the pressure drop (in mmHg) in the blood as it passes through a capillary 1mm long and 2$\mu m$in radius if the speed of the blood through the center of the capillary is 0.66mm/s? (The viscosity of whole blood is $4 \times {10^{ - 3}}$poise).
Answer
124.5k+ views
Hint: Blood passes through a capillary only if there is a pressure difference between two points. Maximum velocity is at the center of the tube as near the periphery, due to the friction between liquid and walls of the tube, the flow of liquid slows down. The maximum velocity at the center of tube is determined by the formula ${v_{\max }} = \dfrac{{({P_1} - {P_2}){R^2}}}{{4\eta L}}$. With the help of this equation, the pressure difference can be found out. Now, to note the pressure in terms of mercury level, we equate the pressure difference with$\rho gh$. Here, h will give the pressure difference in terms of height of mercury column giving the same pressure as is taken as the density of mercury.
Complete step by step solution:
To find the pressure difference we use the formula
${v_{\max }} = \dfrac{{({P_1} - {P_2}){R^2}}}{{4\eta L}}$
Here, P1 and P2 are the pressure at two points at spacing L and radius R for liquid with coefficient of viscosity ŋ.
Substituting the values, we get
\[
{P_1} - {P_2} = \dfrac{{4\eta L{v_{\max }}}}{{{R^2}}} \\
\Rightarrow {P_1} - {P_2} = \dfrac{{4 \times 4 \times {{10}^{ - 3}} \times (.66 \times {{10}^{ - 3}}) \times {{10}^{ - 3}}}}{{{{(2 \times {{10}^{ - 3}})}^2}}} \\
\Rightarrow {P_1} - {P_2} = 2.64 \times {10^3} = \rho gh \\
\Rightarrow h = \dfrac{{2.64 \times {{10}^3}}}{{\rho g}} \\
\Rightarrow h = 19.5mm \\
\\
\\
\]
Therefore, the pressure difference can be said to be 19.5 mm of Hg.
The value of this answer signifies that if the amount of pressure 19.5mm of mercury would create is equal to the pressure difference across two points.
Note: This phenomenon occurs due to viscosity of the fluid. Viscosity is the property by the virtue of which, friction between the layers of the liquid and with the surfaces in contact. Here, the fluid close to the surface therefore has lesser velocity than the fluid at the center. Fluid always flows from a region of high pressure to a region of low pressure.
Complete step by step solution:
To find the pressure difference we use the formula
${v_{\max }} = \dfrac{{({P_1} - {P_2}){R^2}}}{{4\eta L}}$
Here, P1 and P2 are the pressure at two points at spacing L and radius R for liquid with coefficient of viscosity ŋ.
Substituting the values, we get
\[
{P_1} - {P_2} = \dfrac{{4\eta L{v_{\max }}}}{{{R^2}}} \\
\Rightarrow {P_1} - {P_2} = \dfrac{{4 \times 4 \times {{10}^{ - 3}} \times (.66 \times {{10}^{ - 3}}) \times {{10}^{ - 3}}}}{{{{(2 \times {{10}^{ - 3}})}^2}}} \\
\Rightarrow {P_1} - {P_2} = 2.64 \times {10^3} = \rho gh \\
\Rightarrow h = \dfrac{{2.64 \times {{10}^3}}}{{\rho g}} \\
\Rightarrow h = 19.5mm \\
\\
\\
\]
Therefore, the pressure difference can be said to be 19.5 mm of Hg.
The value of this answer signifies that if the amount of pressure 19.5mm of mercury would create is equal to the pressure difference across two points.
Note: This phenomenon occurs due to viscosity of the fluid. Viscosity is the property by the virtue of which, friction between the layers of the liquid and with the surfaces in contact. Here, the fluid close to the surface therefore has lesser velocity than the fluid at the center. Fluid always flows from a region of high pressure to a region of low pressure.
Recently Updated Pages
Difference Between Circuit Switching and Packet Switching

Difference Between Mass and Weight

JEE Main Participating Colleges 2024 - A Complete List of Top Colleges

JEE Main Maths Paper Pattern 2025 – Marking, Sections & Tips

Sign up for JEE Main 2025 Live Classes - Vedantu

JEE Main 2025 Helpline Numbers - Center Contact, Phone Number, Address

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility & More

JEE Main Exam Marking Scheme: Detailed Breakdown of Marks and Negative Marking

JEE Main 2023 January 24 Shift 2 Question Paper with Answer Keys & Solutions

Learn About Angle Of Deviation In Prism: JEE Main Physics 2025

JEE Main 2025: Conversion of Galvanometer Into Ammeter And Voltmeter in Physics

JEE Main Login 2045: Step-by-Step Instructions and Details

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions for Class 11 Physics Chapter 1 Units and Measurements

NCERT Solutions for Class 11 Physics Chapter 9 Mechanical Properties of Fluids

Units and Measurements Class 11 Notes: CBSE Physics Chapter 1

JEE Advanced 2025: Dates, Registration, Syllabus, Eligibility Criteria and More

NCERT Solutions for Class 11 Physics Chapter 2 Motion In A Straight Line
