
pH of a strong diprotic acid $({{H}_{2}}A)$ at concentration are, respectively:
(i) ${{10}^{-4\,}}M$ (ii) ${{10}^{-4}}N$
(A) $3.7\,and\,4$
(B) $4\,\,and\,3.7$
(C) $4\,and\,4$
(D) $3.7\,and\,3.7$
Answer
223.2k+ views
Hint: The pH which measures the extent of acidity of acid, that is, its ease to give away its protons in water. Also, in the normality of acid in relation to the molarity, the number of moles of protons provided in the reaction is considered before calculating the pH.
Complete step by step solution:
The diprotic acid is an acid which has two ionizable hydrogen atoms. It donates its two hydrogen ions when dissolved in water. Thus, it is also called dibasic acid. All diprotic acids have two protons per molecule.
In order to calculate the pH of protic acid, we use the formula:
\[pH=-\log \left[ {{H}^{+}} \right]\]
(i) Given the concentration of acid, $\left[ {{H}_{2}}A \right]$ as\[\text{1}{{\text{0}}^{\text{-4}}}\text{ M}\],where it produces two moles of hydrogen ions on dissolution. The concentration of $\left[ {{H}^{+}} \right]$ becomes $2\times {{10}^{-4}}M$.
Then, putting the value of $\left[ {{H}^{+}} \right]$ in the formula for pH, we get,
\[pH=-\log \left[ \text{2}\times \text{1}{{\text{0}}^{\text{-4}}} \right]\]
\[=-\log 2-(-4\log 10)\]
\[=-\log 2+(4\log 10)\]
\[=-0.301+4\,\,=3.699\sim \,3.7\,\]
(ii) Also, for the concentration of the acid, $\left[ {{H}_{2}}A \right]$ given as ${{10}^{-4}}\,N$, the relation between normality and molarity is as follows: $Normality\,=\,n\,\,\times \,Molarity$, where n is the number of moles of hydrogen ions formed in the reaction. Therefore, n = 2.
Then, the concentration of acid is,
\[\text{Molarity= }\dfrac{\text{Normality}}{\text{n}}\text{=}\dfrac{\text{1}{{\text{0}}^{\text{-4}}}}{\text{2}}\text{M}\]
We can then, get the concentration of $\left[ {{H}^{+}} \right]$ to be simply ${{10}^{-4}}\,M$and
\[pH=-\log \left[ {{10}^{-4}} \right]\]
\[pH=\,\,4\log 10\,\,=4\]
Therefore, we get the pH of a strong diprotic acid for concentration ${{10}^{-4}}\,M$ and ${{10}^{-4}}\,N$ as 3.7 and 4 respectively.
That is, option (A).
Note: The ease with which these acids lose their first and second (or third and so on) protons has a large difference. For example, in the diprotic acid the first dissociation constant, ${{K}_{a1}}$ is larger than 1, whereas, for the second proton loss given by second dissociation constant ${{K}_{a2}}$ is minimal.
Therefore, ${{K}_{a1}}>\,{{K}_{a2}}>\,{{K}_{a3}}$ is found true for polyprotic acids, wherewith each ionization step the removal of $({{H}^{+}})$ from the molecule becomes difficult as the negative charge increases.
But, in case of ionic salts of these acids, they dissociate $100%$ in a single step.
Complete step by step solution:
The diprotic acid is an acid which has two ionizable hydrogen atoms. It donates its two hydrogen ions when dissolved in water. Thus, it is also called dibasic acid. All diprotic acids have two protons per molecule.
In order to calculate the pH of protic acid, we use the formula:
\[pH=-\log \left[ {{H}^{+}} \right]\]
(i) Given the concentration of acid, $\left[ {{H}_{2}}A \right]$ as\[\text{1}{{\text{0}}^{\text{-4}}}\text{ M}\],where it produces two moles of hydrogen ions on dissolution. The concentration of $\left[ {{H}^{+}} \right]$ becomes $2\times {{10}^{-4}}M$.
Then, putting the value of $\left[ {{H}^{+}} \right]$ in the formula for pH, we get,
\[pH=-\log \left[ \text{2}\times \text{1}{{\text{0}}^{\text{-4}}} \right]\]
\[=-\log 2-(-4\log 10)\]
\[=-\log 2+(4\log 10)\]
\[=-0.301+4\,\,=3.699\sim \,3.7\,\]
(ii) Also, for the concentration of the acid, $\left[ {{H}_{2}}A \right]$ given as ${{10}^{-4}}\,N$, the relation between normality and molarity is as follows: $Normality\,=\,n\,\,\times \,Molarity$, where n is the number of moles of hydrogen ions formed in the reaction. Therefore, n = 2.
Then, the concentration of acid is,
\[\text{Molarity= }\dfrac{\text{Normality}}{\text{n}}\text{=}\dfrac{\text{1}{{\text{0}}^{\text{-4}}}}{\text{2}}\text{M}\]
We can then, get the concentration of $\left[ {{H}^{+}} \right]$ to be simply ${{10}^{-4}}\,M$and
\[pH=-\log \left[ {{10}^{-4}} \right]\]
\[pH=\,\,4\log 10\,\,=4\]
Therefore, we get the pH of a strong diprotic acid for concentration ${{10}^{-4}}\,M$ and ${{10}^{-4}}\,N$ as 3.7 and 4 respectively.
That is, option (A).
Note: The ease with which these acids lose their first and second (or third and so on) protons has a large difference. For example, in the diprotic acid the first dissociation constant, ${{K}_{a1}}$ is larger than 1, whereas, for the second proton loss given by second dissociation constant ${{K}_{a2}}$ is minimal.
Therefore, ${{K}_{a1}}>\,{{K}_{a2}}>\,{{K}_{a3}}$ is found true for polyprotic acids, wherewith each ionization step the removal of $({{H}^{+}})$ from the molecule becomes difficult as the negative charge increases.
But, in case of ionic salts of these acids, they dissociate $100%$ in a single step.
Recently Updated Pages
JEE General Topics in Chemistry Important Concepts and Tips

JEE Extractive Metallurgy Important Concepts and Tips for Exam Preparation

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

Electricity and Magnetism Explained: Key Concepts & Applications

JEE Energetics Important Concepts and Tips for Exam Preparation

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Ideal and Non-Ideal Solutions Explained for Class 12 Chemistry

Understanding the Angle of Deviation in a Prism

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

Degree of Dissociation: Meaning, Formula, Calculation & Uses

Understanding Atomic Structure for Beginners

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Organic Chemistry Some Basic Principles And Techniques Class 11 Chemistry Chapter 8 CBSE Notes - 2025-26

Hydrocarbons Class 11 Chemistry Chapter 9 CBSE Notes - 2025-26

Redox Reaction Class 11 Chemistry Chapter 7 CBSE Notes - 2025-26

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

