
Nickel shows ferromagnetic property at room temperature. If the temperature is increased beyond Curie temperature, then it will show:
A. Paramagnetism
B. Anti-Ferromagnetism
C. NO magnetic property
D. Diamagnetism
Answer
221.7k+ views
Hint If the temperature of a ferromagnetic material is raised above a certain value, called the Curie temperature, the coupling ceases to be effective. Due to which magnetic moments of the electrons reduce.
Complete Step By Step Answer
Nickel exhibits ferromagnetism due to a quantum physical effect called exchange coupling in which electron spins of one atom interact with those of neighboring atoms.
The result is alignment of the magnetic dipole moments of the atoms, in spite of the randomizing tendency of atomic collisions. This persistent alignment is what gives ferromagnetic materials their permanent magnetism.
Most such materials then become simply paramagnetic, that is the dipoles still tend to align with an external field but much more weakly, and thermal agitation can now more easily disrupt the alignment.
When temperature increases then magnetic fields inside the matter decreases because the magnetic moment of electrons get randomised direction due to temperature changes.
Finally a condition comes when the magnetic moment of electrons gets reduced to a particular stage which is called paramagnetism.
And the temperature above which ferromagnetic materials get converted into paramagnetic is called curie temperature.
Hence the correct option is ( A) Paramagnetic.
Note Ferromagnetism is a physical phenomenon in which certain electrically uncharged materials strongly attract others.
Paramagnetism is a form of magnetism whereby some materials are weakly attracted by an externally applied magnetic field.
Complete Step By Step Answer
Nickel exhibits ferromagnetism due to a quantum physical effect called exchange coupling in which electron spins of one atom interact with those of neighboring atoms.
The result is alignment of the magnetic dipole moments of the atoms, in spite of the randomizing tendency of atomic collisions. This persistent alignment is what gives ferromagnetic materials their permanent magnetism.
Most such materials then become simply paramagnetic, that is the dipoles still tend to align with an external field but much more weakly, and thermal agitation can now more easily disrupt the alignment.
When temperature increases then magnetic fields inside the matter decreases because the magnetic moment of electrons get randomised direction due to temperature changes.
Finally a condition comes when the magnetic moment of electrons gets reduced to a particular stage which is called paramagnetism.
And the temperature above which ferromagnetic materials get converted into paramagnetic is called curie temperature.
Hence the correct option is ( A) Paramagnetic.
Note Ferromagnetism is a physical phenomenon in which certain electrically uncharged materials strongly attract others.
Paramagnetism is a form of magnetism whereby some materials are weakly attracted by an externally applied magnetic field.
Recently Updated Pages
States of Matter Chapter For JEE Main Chemistry

Mass vs Weight: Key Differences Explained for Students

Circuit Switching vs Packet Switching: Key Differences Explained

Conduction Explained: Definition, Examples & Science for Students

Balancing of Redox Reactions - Important Concepts and Tips for JEE

Atomic Size - Important Concepts and Tips for JEE

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

How to Convert a Galvanometer into an Ammeter or Voltmeter

Degree of Dissociation: Meaning, Formula, Calculation & Uses

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Thermodynamics Class 11 Physics Chapter 11 CBSE Notes - 2025-26

Units And Measurements Class 11 Physics Chapter 1 CBSE Notes - 2025-26

NCERT Solutions For Class 11 Physics Chapter 8 Mechanical Properties Of Solids

Motion in a Straight Line Class 11 Physics Chapter 2 CBSE Notes - 2025-26

Laws of Motion Class 11 Physics Chapter 4 CBSE Notes - 2025-26

