
${N_2} + 3{H_2} \to 2N{H_3}$. Molecular weights of $N{H_3}$ and ${N_2}$ are ${x_1}$ and ${x_2}$ respectively. Their equivalent weights are ${y_1}$ and ${y_2}$ respectively. Then (${y_1} - {y_2}$) is:
(A)$(2{x_1} - {x_2})/6$
(B)$({x_1} - {x_2})$
(C)$(3{x_1} - {x_2})$
(D)$({x_1} - 3{x_2})$
Answer
124.2k+ views
Hint: Using the given chemical reaction first calculate the n-factor of $N{H_3}$ and ${N_2}$. Then find their equivalent weights and subtract them to find your answer.
Formula used:
-Equivalent weight: It is defined as molecular weight divided by the n-factor of the molecule.
$Eq.wt. = Mol.wt./n - factor$ …………..(1)
Complete step by step answer:
-To find the value of (${y_1} - {y_2}$), first we need to find the value of ${y_1}$ and ${y_2}$ which are the respective equivalent weights of $N{H_3}$ and${N_2}$.
To find the equivalent weights we need to find the n-factor of both because: equation (1)
$Eq.wt. = Mol.wt./n - factor$
-So, first let’s find out the n-factor of $N{H_3}$ and ${N_2}$, using it we will find their equivalent weights. The reaction is: ${N_2} + 3{H_2} \to 2N{H_3}$.
-For ${N_2}$: Initially the oxidation state of N atoms here is 0. But later it is converted into ${N^{ - 3}}$ in $N{H_3}$. This means that 1 atom of N shares 3 electrons with H atoms and so 2 N atoms will share in total 6 electrons. So, the n-factor of ${N_2}$ is 6.
Molecular weight of ${N_2}$ is ${x_2}$ and equivalent weight is ${y_2}$ (given in the question).
So, using equation (1): ${y_2} = {x_2}/6$ ………...(2)
-For $N{H_3}$: Above we just proved how 2 N atoms or 2 moles of $N{H_3}$ are taking 6 electrons. So, 1 mole of $N{H_3}$ will take 3 electrons. Hence the n-factor of $N{H_3}$ will be 3.
Molecular weight of $N{H_3}$ is ${x_1}$ and its equivalent weight is ${y_1}$ (given in the question).
So, using equation (1): ${y_1} = {x_1}/3$ ………….(3)
-Now use the values of ${y_2}$ and ${y_1}$ from equations (2) and (3) to calculate (${y_1} - {y_2}$).
${y_1} - {y_2}$ = $({x_1}/3) - ({x_2}/6)$
= $(2{x_1} - {x_2})/6$
So, the correct option is: (A) $(2{x_1} - {x_2})/6$
Note: The most common mistake we make here is while finding out the n-factor that is the number of electrons being shared. So, while calculating the oxidation states always check whether that state is for 1 atom or more atoms.
Formula used:
-Equivalent weight: It is defined as molecular weight divided by the n-factor of the molecule.
$Eq.wt. = Mol.wt./n - factor$ …………..(1)
Complete step by step answer:
-To find the value of (${y_1} - {y_2}$), first we need to find the value of ${y_1}$ and ${y_2}$ which are the respective equivalent weights of $N{H_3}$ and${N_2}$.
To find the equivalent weights we need to find the n-factor of both because: equation (1)
$Eq.wt. = Mol.wt./n - factor$
-So, first let’s find out the n-factor of $N{H_3}$ and ${N_2}$, using it we will find their equivalent weights. The reaction is: ${N_2} + 3{H_2} \to 2N{H_3}$.
-For ${N_2}$: Initially the oxidation state of N atoms here is 0. But later it is converted into ${N^{ - 3}}$ in $N{H_3}$. This means that 1 atom of N shares 3 electrons with H atoms and so 2 N atoms will share in total 6 electrons. So, the n-factor of ${N_2}$ is 6.
Molecular weight of ${N_2}$ is ${x_2}$ and equivalent weight is ${y_2}$ (given in the question).
So, using equation (1): ${y_2} = {x_2}/6$ ………...(2)
-For $N{H_3}$: Above we just proved how 2 N atoms or 2 moles of $N{H_3}$ are taking 6 electrons. So, 1 mole of $N{H_3}$ will take 3 electrons. Hence the n-factor of $N{H_3}$ will be 3.
Molecular weight of $N{H_3}$ is ${x_1}$ and its equivalent weight is ${y_1}$ (given in the question).
So, using equation (1): ${y_1} = {x_1}/3$ ………….(3)
-Now use the values of ${y_2}$ and ${y_1}$ from equations (2) and (3) to calculate (${y_1} - {y_2}$).
${y_1} - {y_2}$ = $({x_1}/3) - ({x_2}/6)$
= $(2{x_1} - {x_2})/6$
So, the correct option is: (A) $(2{x_1} - {x_2})/6$
Note: The most common mistake we make here is while finding out the n-factor that is the number of electrons being shared. So, while calculating the oxidation states always check whether that state is for 1 atom or more atoms.
Recently Updated Pages
Types of Solutions - Solution in Chemistry

Difference Between Crystalline and Amorphous Solid

JEE Main Participating Colleges 2024 - A Complete List of Top Colleges

JEE Main Maths Paper Pattern 2025 – Marking, Sections & Tips

Sign up for JEE Main 2025 Live Classes - Vedantu

JEE Main 2025 Helpline Numbers - Center Contact, Phone Number, Address

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility & More

JEE Main Exam Marking Scheme: Detailed Breakdown of Marks and Negative Marking

JEE Main 2023 January 24 Shift 2 Question Paper with Answer Keys & Solutions

Learn About Angle Of Deviation In Prism: JEE Main Physics 2025

JEE Main 2025: Conversion of Galvanometer Into Ammeter And Voltmeter in Physics

JEE Main Login 2045: Step-by-Step Instructions and Details

Other Pages
NCERT Solutions for Class 11 Chemistry Chapter 7 Redox Reaction

NCERT Solutions for Class 11 Chemistry Chapter 5 Thermodynamics

JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions for Class 11 Chemistry Chapter 8 Organic Chemistry

NCERT Solutions for Class 11 Chemistry Chapter 6 Equilibrium

NCERT Solutions for Class 11 Chemistry Chapter 9 Hydrocarbons
