Answer
Verified
80.7k+ views
Hint: Using the given chemical reaction first calculate the n-factor of $N{H_3}$ and ${N_2}$. Then find their equivalent weights and subtract them to find your answer.
Formula used:
-Equivalent weight: It is defined as molecular weight divided by the n-factor of the molecule.
$Eq.wt. = Mol.wt./n - factor$ …………..(1)
Complete step by step answer:
-To find the value of (${y_1} - {y_2}$), first we need to find the value of ${y_1}$ and ${y_2}$ which are the respective equivalent weights of $N{H_3}$ and${N_2}$.
To find the equivalent weights we need to find the n-factor of both because: equation (1)
$Eq.wt. = Mol.wt./n - factor$
-So, first let’s find out the n-factor of $N{H_3}$ and ${N_2}$, using it we will find their equivalent weights. The reaction is: ${N_2} + 3{H_2} \to 2N{H_3}$.
-For ${N_2}$: Initially the oxidation state of N atoms here is 0. But later it is converted into ${N^{ - 3}}$ in $N{H_3}$. This means that 1 atom of N shares 3 electrons with H atoms and so 2 N atoms will share in total 6 electrons. So, the n-factor of ${N_2}$ is 6.
Molecular weight of ${N_2}$ is ${x_2}$ and equivalent weight is ${y_2}$ (given in the question).
So, using equation (1): ${y_2} = {x_2}/6$ ………...(2)
-For $N{H_3}$: Above we just proved how 2 N atoms or 2 moles of $N{H_3}$ are taking 6 electrons. So, 1 mole of $N{H_3}$ will take 3 electrons. Hence the n-factor of $N{H_3}$ will be 3.
Molecular weight of $N{H_3}$ is ${x_1}$ and its equivalent weight is ${y_1}$ (given in the question).
So, using equation (1): ${y_1} = {x_1}/3$ ………….(3)
-Now use the values of ${y_2}$ and ${y_1}$ from equations (2) and (3) to calculate (${y_1} - {y_2}$).
${y_1} - {y_2}$ = $({x_1}/3) - ({x_2}/6)$
= $(2{x_1} - {x_2})/6$
So, the correct option is: (A) $(2{x_1} - {x_2})/6$
Note: The most common mistake we make here is while finding out the n-factor that is the number of electrons being shared. So, while calculating the oxidation states always check whether that state is for 1 atom or more atoms.
Formula used:
-Equivalent weight: It is defined as molecular weight divided by the n-factor of the molecule.
$Eq.wt. = Mol.wt./n - factor$ …………..(1)
Complete step by step answer:
-To find the value of (${y_1} - {y_2}$), first we need to find the value of ${y_1}$ and ${y_2}$ which are the respective equivalent weights of $N{H_3}$ and${N_2}$.
To find the equivalent weights we need to find the n-factor of both because: equation (1)
$Eq.wt. = Mol.wt./n - factor$
-So, first let’s find out the n-factor of $N{H_3}$ and ${N_2}$, using it we will find their equivalent weights. The reaction is: ${N_2} + 3{H_2} \to 2N{H_3}$.
-For ${N_2}$: Initially the oxidation state of N atoms here is 0. But later it is converted into ${N^{ - 3}}$ in $N{H_3}$. This means that 1 atom of N shares 3 electrons with H atoms and so 2 N atoms will share in total 6 electrons. So, the n-factor of ${N_2}$ is 6.
Molecular weight of ${N_2}$ is ${x_2}$ and equivalent weight is ${y_2}$ (given in the question).
So, using equation (1): ${y_2} = {x_2}/6$ ………...(2)
-For $N{H_3}$: Above we just proved how 2 N atoms or 2 moles of $N{H_3}$ are taking 6 electrons. So, 1 mole of $N{H_3}$ will take 3 electrons. Hence the n-factor of $N{H_3}$ will be 3.
Molecular weight of $N{H_3}$ is ${x_1}$ and its equivalent weight is ${y_1}$ (given in the question).
So, using equation (1): ${y_1} = {x_1}/3$ ………….(3)
-Now use the values of ${y_2}$ and ${y_1}$ from equations (2) and (3) to calculate (${y_1} - {y_2}$).
${y_1} - {y_2}$ = $({x_1}/3) - ({x_2}/6)$
= $(2{x_1} - {x_2})/6$
So, the correct option is: (A) $(2{x_1} - {x_2})/6$
Note: The most common mistake we make here is while finding out the n-factor that is the number of electrons being shared. So, while calculating the oxidation states always check whether that state is for 1 atom or more atoms.
Recently Updated Pages
Name the scale on which the destructive energy of an class 11 physics JEE_Main
Write an article on the need and importance of sports class 10 english JEE_Main
Choose the exact meaning of the given idiomphrase The class 9 english JEE_Main
Choose the one which best expresses the meaning of class 9 english JEE_Main
What does a hydrometer consist of A A cylindrical stem class 9 physics JEE_Main
A motorcyclist of mass m is to negotiate a curve of class 9 physics JEE_Main
Other Pages
A fish is near the center of a spherical waterfilled class 12 physics JEE_Main
If a wire of resistance R is stretched to double of class 12 physics JEE_Main
The area of a circle whose centre is left hk right class 10 maths JEE_Main
Electric field due to uniformly charged sphere class 12 physics JEE_Main
A parallel plate air condenser is connected with a class 12 physics JEE_MAIN