
What is the minimum number of bulbs, each marked $60W$ , $40V$ that can work safely when connected in series with a 240V mains supply?
A. $2$
B. $4$
C. $6$
D. $8$
Answer
233.1k+ views
Hint Firstly, we will calculate the resistance of each bulb and maximum current that can flow through the bulb without damaging it. Then we will find the minimum resistance required in the circuit. We will compare the two results to get the required number of bulbs.
Complete Step by step solution
Given: voltage of supply= ${V_s} = 240V$
Voltage required for bulb= $V = 40V$
Power of each bulb= $P = 60W$
Now resistance of each bulb is given by,
$\because R = \dfrac{{{V^2}}}{P}$
On Putting value, we get,
$R = \dfrac{{{{40}^2}}}{{60}} = 26.67\Omega ......(1)$
Now maximum current that can flow through bulb without damaging it is given by,
$
{I_{\max }} = \dfrac{P}{V} \\
{I_{\max }} = \dfrac{{60}}{{40}} \\
{\operatorname{I} _{\max }} = 1.5A \\
$
$
\because {I_{\max }} = 1.5A \\
\\
$
Therefore, minimum resistance required in the circuit is,
${R_{\min }} = \dfrac{{{V_s}}}{{{I_{\max }}}}$
$\therefore {R_{\min }} = \dfrac{{240}}{{1.5}} = 160\Omega ......(2)$
Let n number of bulbs be connected in series.
Then resistance of n bulbs is equal to ${R_{eq}} = n26.67......(3)$
Using (2) and (3) we get,
$n26.67 \leqslant 160$
From above,
$n = 6$
Hence the minimum number of bulbs required is 6.
Option (C) is correct.
Note Above we have calculated the maximum value of current that flows through each bulb without damaging it. If we provide more than that value of current that would cause heating effects and would damage the bulbs.
Complete Step by step solution
Given: voltage of supply= ${V_s} = 240V$
Voltage required for bulb= $V = 40V$
Power of each bulb= $P = 60W$
Now resistance of each bulb is given by,
$\because R = \dfrac{{{V^2}}}{P}$
On Putting value, we get,
$R = \dfrac{{{{40}^2}}}{{60}} = 26.67\Omega ......(1)$
Now maximum current that can flow through bulb without damaging it is given by,
$
{I_{\max }} = \dfrac{P}{V} \\
{I_{\max }} = \dfrac{{60}}{{40}} \\
{\operatorname{I} _{\max }} = 1.5A \\
$
$
\because {I_{\max }} = 1.5A \\
\\
$
Therefore, minimum resistance required in the circuit is,
${R_{\min }} = \dfrac{{{V_s}}}{{{I_{\max }}}}$
$\therefore {R_{\min }} = \dfrac{{240}}{{1.5}} = 160\Omega ......(2)$
Let n number of bulbs be connected in series.
Then resistance of n bulbs is equal to ${R_{eq}} = n26.67......(3)$
Using (2) and (3) we get,
$n26.67 \leqslant 160$
From above,
$n = 6$
Hence the minimum number of bulbs required is 6.
Option (C) is correct.
Note Above we have calculated the maximum value of current that flows through each bulb without damaging it. If we provide more than that value of current that would cause heating effects and would damage the bulbs.
Recently Updated Pages
Circuit Switching vs Packet Switching: Key Differences Explained

JEE General Topics in Chemistry Important Concepts and Tips

JEE Extractive Metallurgy Important Concepts and Tips for Exam Preparation

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

Electricity and Magnetism Explained: Key Concepts & Applications

Trending doubts
JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Understanding Uniform Acceleration in Physics

Why does capacitor block DC and allow AC class 12 physics JEE_Main

Understanding How a Current Loop Acts as a Magnetic Dipole

Step-by-Step Guide to Young’s Double Slit Experiment Derivation

Other Pages
JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Understanding Average and RMS Value in Electrical Circuits

Understanding Collisions: Types and Examples for Students

Ideal and Non-Ideal Solutions Explained for Class 12 Chemistry

JEE Main Participating Colleges 2026 - A Complete List of Top Colleges

Electric field due to uniformly charged sphere class 12 physics JEE_Main

