
Magnifying power of an astronomical telescope is 'M.P'. If the focal length of objective is doubled, then the magnifying power for normal adjustment will become
(A) $2 \mathrm{M.P}$
(B) $\dfrac{\text { M.P }}{2}$
(C) $3 \mathrm{M.P}$
(D) $\dfrac{3 \mathrm{M.P}}{2}$
Answer
218.4k+ views
Hint: We know that magnification is the ability to make small objects seem larger, such as making a microscopic organism visible. Resolution is the ability to distinguish two objects from each other. When the image formed is virtual and erect, magnification is positive. And, when the image formed is real and inverted, magnification is negative. The underlying principle of a microscope is that lenses refract light which allows for magnification. Refraction occurs when light travels through an area of space that has a changing index of refraction.
Complete step by step answer
We know that the magnifying power is defined as the ratio between the dimensions of the image and the object. The process of magnification can occur in lenses, telescopes, microscopes and even in slide projectors. Simple magnifying lenses are biconvex - these lenses are thicker at the center than at the edges. The magnifying power, or extent to which the object being viewed appears enlarged, and the field of view, or size of the object that can be viewed, are related by the geometry of the optical system.
The magnifying power or M.P of the reflecting telescope is $\dfrac{\mathrm{f}_{0}}{\mathrm{f}_{\mathrm{e}}} .$
If the focal length of the eye-piece is halved, then its magnifying power $\mathrm{m}^{\prime}\left(\dfrac{\mathrm{f}_{0} \times 2}{\mathrm{f}_{\mathrm{e}}}\right)$ is 2 M.P.
So, the correct answer is option A.
Note: We know that virtual images are always located behind the mirror. Virtual images can be either upright or inverted. Virtual images can be magnified in size, reduced in size or the same size as the object. Virtual images can be formed by concave, convex and plane mirrors. Magnification is the ratio between the height of the object and the height of the image. In case of a virtual image, the height of the image, as well as the height of the object, carries a positive sign. Therefore, the magnification is positive in this case. A real image occurs where rays converge, whereas a virtual image occurs where rays only appear to converge. Real images can be produced by concave mirrors and converging lenses, only if the object is placed further away from the mirror/lens than the focal point and this real image is inverted.
Complete step by step answer
We know that the magnifying power is defined as the ratio between the dimensions of the image and the object. The process of magnification can occur in lenses, telescopes, microscopes and even in slide projectors. Simple magnifying lenses are biconvex - these lenses are thicker at the center than at the edges. The magnifying power, or extent to which the object being viewed appears enlarged, and the field of view, or size of the object that can be viewed, are related by the geometry of the optical system.
The magnifying power or M.P of the reflecting telescope is $\dfrac{\mathrm{f}_{0}}{\mathrm{f}_{\mathrm{e}}} .$
If the focal length of the eye-piece is halved, then its magnifying power $\mathrm{m}^{\prime}\left(\dfrac{\mathrm{f}_{0} \times 2}{\mathrm{f}_{\mathrm{e}}}\right)$ is 2 M.P.
So, the correct answer is option A.
Note: We know that virtual images are always located behind the mirror. Virtual images can be either upright or inverted. Virtual images can be magnified in size, reduced in size or the same size as the object. Virtual images can be formed by concave, convex and plane mirrors. Magnification is the ratio between the height of the object and the height of the image. In case of a virtual image, the height of the image, as well as the height of the object, carries a positive sign. Therefore, the magnification is positive in this case. A real image occurs where rays converge, whereas a virtual image occurs where rays only appear to converge. Real images can be produced by concave mirrors and converging lenses, only if the object is placed further away from the mirror/lens than the focal point and this real image is inverted.
Recently Updated Pages
A square frame of side 10 cm and a long straight wire class 12 physics JEE_Main

The work done in slowly moving an electron of charge class 12 physics JEE_Main

Two identical charged spheres suspended from a common class 12 physics JEE_Main

According to Bohrs theory the timeaveraged magnetic class 12 physics JEE_Main

ill in the blanks Pure tungsten has A Low resistivity class 12 physics JEE_Main

The value of the resistor RS needed in the DC voltage class 12 physics JEE_Main

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

Understanding Collisions: Types and Examples for Students

Understanding Atomic Structure for Beginners

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

How to Convert a Galvanometer into an Ammeter or Voltmeter

Understanding Centrifugal Force in Physics

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Degree of Dissociation: Meaning, Formula, Calculation & Uses

Understanding Electromagnetic Waves and Their Importance

