
Let $y = y(x)$ be the solution of the differential equation \[\cos \;x(3\sin \;x + \cos \;x + 3)dy = (1 + y\sin x(3\sin \,x + \cos \,x + 3))dx,\;0 \leqslant x \leqslant \dfrac{\pi }{2},\;y(0) = 0\]. Then, $y\left( {\dfrac{\pi }{3}} \right)$ is equal to
(A) $2{\log _e}\left[ {\dfrac{{(2\sqrt 3 + 10)}}{{11}}} \right]$
(B) $2{\log _e}\left[ {\dfrac{{(\sqrt 3 + 7)}}{2}} \right]$
(C) $2{\log _e}\left[ {\dfrac{{(3\sqrt 3 - 8)}}{4}} \right]$
(D) $2{\log _e}\left[ {\dfrac{{(2\sqrt 3 + 9)}}{6}} \right]$
Answer
163.8k+ views
Hint: To solve this question, we will first expand R.H.S then we will simplify it using the product rule and integrate it. Further, we will use suitable trigonometric identities to get a more simplified equation. Next, we will use differentiation, substitution, completing the square method, and rationalization to get the final answer.
Formula Used:
$(x\;dy - y\;dx = d\;xy)$
$\left[ {\sin \;x = 2\sin \dfrac{x}{2}\cos \dfrac{x}{2}} \right]$
$\left[ {\cos \;x = 1 - 2{{\sin }^2}\dfrac{x}{2}} \right]$
$\left[ {\dfrac{1}{{\cos \;x}} = \sec x} \right]$
$\left[ {\dfrac{{\sin x}}{{\cos \;x}} = \tan \;x} \right]$
$\left[ {{{\sec }^2}x = 1 + {{\tan }^2}x} \right]$
$\left[ {{{(a + b)}^2} = {a^2} + {b^2} + 2ab} \right]$
$\left[ {\int {\dfrac{{dx}}{{{x^2} - {a^2}}} = \dfrac{1}{{2a}}\ln \left| {\dfrac{{x - a}}{{x + a}}} \right|} } \right]$
$\left[ {\ln \;a + \ln \;b = \ln \;ab} \right]$
Complete step by step Solution:
The given equation is
\[\cos \;x(3\sin \;x + \cos \;x + 3)dy = (1 + y\sin x(3\sin \,x + \cos \,x + 3))dx\]
Expanding R.H.S
\[\cos \;x(3\sin \;x + \cos \;x + 3)dy = dx + y\sin x(3\sin \,x + \cos \,x + 3)dx\]
Taking everything to L.H.S except $dx$
\[\cos \;x(3\sin \;x + \cos \;x + 3)dy - y\sin x(3\sin \,x + \cos \,x + 3)dx = dx\]
Taking \[(3\sin \,x + \cos \,x + 3)\] as common
$(\cos \,x\;dy - y\;\sin \;x\;dx)(3\sin \;x + \cos \;x + 3) = dx$
Using product rule$,$ i.e.$,$ $(x\;dy - y\;dx = d\;xy)$
$d(y - \cos \;x) = \dfrac{{dx}}{{3\sin \;x + \cos \;x + 3}}$ $\left[ {\because \cos \;x\,dy - y\sin \;x\;dx = d(y - \cos \;x)} \right]$
Integrating both sides$,$
$\int {d(y - \cos \;x)} = \int {\dfrac{{dx}}{{3\sin \;x + \cos \;x + 3}}} $
Using trigonometric identities$,$
$y\cos \;x = \int {\dfrac{{dx}}{{3\left( {2\sin \dfrac{x}{2}\cos \dfrac{x}{2}} \right) + \left( {1 - 2{{\sin }^2}\dfrac{x}{2}} \right) + 3}}} $ $\left[ {\because \sin \;x = 2\sin \dfrac{x}{2}\cos \dfrac{x}{2}} \right]$$,$$\left[ {\because \cos \;x = 1 - 2{{\sin }^2}\dfrac{x}{2}} \right]$
Solving it$,$
\[y\cos \;x = \int {\dfrac{{dx}}{{6\sin \dfrac{x}{2}\cos \dfrac{x}{2} - 2{{\sin }^2}\dfrac{x}{2} + 4}}} \]
Divide numerator and denominator by ${\cos ^2}\dfrac{x}{2}$
\[y\cos \;x = \int {\dfrac{{\left( {\dfrac{1}{{{{\cos }^2}\dfrac{x}{2}}}} \right)dx}}{{\left( {\dfrac{{6\sin \dfrac{x}{2}\cos \dfrac{x}{2}}}{{{{\cos }^2}\dfrac{x}{2}}}} \right) - \left( {\dfrac{{2{{\sin }^2}\dfrac{x}{2}}}{{{{\cos }^2}\dfrac{x}{2}}}} \right) + \left( {\dfrac{4}{{{{\cos }^2}\dfrac{x}{2}}}} \right)}}} \]
Solving it further$,$
$y\;\cos \;x = \dfrac{{{{\sec }^2}\dfrac{x}{2}dx}}{{6\tan \dfrac{x}{2} - 2{{\tan }^2}\dfrac{x}{2} + 4{{\sec }^2}\dfrac{x}{2}}}$ $\left[ {\because \dfrac{1}{{\cos \;x}} = \sec x} \right]$$,$$\left[ {\because \dfrac{{\sin x}}{{\cos \;x}} = \tan \;x} \right]$
Using trigonometric identity,
$y\;\cos \;x = \dfrac{{{{\sec }^2}\dfrac{x}{2}dx}}{{6\tan \dfrac{x}{2} - 2{{\tan }^2}\dfrac{x}{2} + 4\left( {1 + {{\tan }^2}\dfrac{x}{2}} \right)}}$ $\left[ {\because {{\sec }^2}x = 1 + {{\tan }^2}x} \right]$
Simplifying it$,$
$y\;\cos \;x = \dfrac{{{{\sec }^2}\dfrac{x}{2}dx}}{{6\tan \dfrac{x}{2} - 2{{\tan }^2}\dfrac{x}{2} + 4 + 4{{\tan }^2}\dfrac{x}{2}}}$
$y\;\cos \;x = \dfrac{{{{\sec }^2}\dfrac{x}{2}dx}}{{6\tan \dfrac{x}{2} + 2{{\tan }^2}\dfrac{x}{2} + 4}}$
Divide numerator and denominator by 2
\[y\;\cos \;x = \dfrac{{\dfrac{1}{2}{{\sec }^2}\dfrac{x}{2}dx}}{{3\tan \dfrac{x}{2} + {{\tan }^2}\dfrac{x}{2} + 2}}\] …………..equation $(1)$
Let $\tan \dfrac{x}{2} = t$ ………………equation $(2)$
Differentiating both sides$,$
$\dfrac{1}{2}{\sec ^2}\dfrac{x}{2}dx = dt$ ………………equation $(3)$
Substituting equation $(2)$ and $(3)$ in equation $(1),$
$y\;\cos \;x = \int {\dfrac{{dt}}{{3t + {t^2} + 2}}} $
Applying completing the square method in the denominator$,$ i.e.$,$ add and subtract $\dfrac{9}{4}$ $($square of half of the coefficient of t$)$ in the denominator
$y\;\cos \;x = \int {\dfrac{{dt}}{{\left( {3t + {t^2} + \dfrac{9}{4}} \right) - \dfrac{9}{4} + 2}}} $
$y\;\cos \;x = \int {\dfrac{{dt}}{{{{\left( {t + \dfrac{3}{2}} \right)}^2} - {{\left( {\dfrac{1}{2}} \right)}^2}}}} $ $\left[ {\because {{(a + b)}^2} = {a^2} + {b^2} + 2ab} \right]$
Integrating$,$
$y\;\cos \;x = \dfrac{1}{{2\left( {\dfrac{1}{2}} \right)}}\ln \left| {\dfrac{{\left( {t + \dfrac{3}{2}} \right) - \dfrac{1}{2}}}{{\left( {t + \dfrac{3}{2}} \right) + \dfrac{1}{2}}}} \right| + C$ ………………equation $(4)$ $\left[ {\because \int {\dfrac{{dx}}{{{x^2} - {a^2}}} = \dfrac{1}{{2a}}\ln \left| {\dfrac{{x - a}}{{x + a}}} \right|} } \right]$
Substituting equation $(2)$ in equation $(4)$ and solving it$,$
$y\;\cos \;x = \ln \left| {\dfrac{{\tan \dfrac{x}{2} + 1}}{{\tan \dfrac{x}{2} - 2}}} \right| + C$ ………………equation $(5)$
We are given that $y(0) = 0$
Using it in equation $(5),$
$0 = \ln \left( {\dfrac{1}{2}} \right) + C$
$C = \ln (2)$
Substituting the value of $C$ in equation $(5),$
\[y\;\cos \;x = \ln \left| {\dfrac{{\tan \dfrac{x}{2} + 1}}{{\tan \dfrac{x}{2} - 2}}} \right| + \ln (2)\]
For $x = \dfrac{\pi }{3},$
\[y\;\cos \left( {\dfrac{\pi }{3}} \right) = \ln \left| {\dfrac{{\tan \dfrac{\pi }{6} + 1}}{{\tan \dfrac{\pi }{6} - 2}}} \right| + \ln (2)\]
\[y\;\left( {\dfrac{1}{2}} \right) = \ln \left| {\dfrac{{\dfrac{1}{{\sqrt 3 }} + 1}}{{\dfrac{1}{{\sqrt 3 }} - 2}}} \right| + \ln (2)\]
On simplifying$,$
$y\left( {\dfrac{1}{2}} \right) = \ln \left( {\dfrac{{1 + \sqrt 3 }}{{1 - 2\sqrt 3 }}} \right) + \ln (2)$
Rationalizing$,$
\[y\left( {\dfrac{1}{2}} \right) = \ln \left| {\left( {\dfrac{{1 + \sqrt 3 }}{{1 - 2\sqrt 3 }}} \right)\left( {\dfrac{{1 + 2\sqrt 3 }}{{1 + 2\sqrt 3 }}} \right)} \right| + \ln (2)\]
Simplifying it further$,$
\[y\left( {\dfrac{1}{2}} \right) = \ln \left( {\dfrac{{5 + \sqrt 3 }}{{11}}} \right) + \ln (2)\]
\[y\left( {\dfrac{1}{2}} \right) = \ln \left( {\dfrac{{10 + 2\sqrt 3 }}{{11}}} \right)\] $\left[ {\because \ln \;a + \ln \;b = \ln \;ab} \right]$
Solving it to get the final answer$,$
\[y = 2\ln \left( {\dfrac{{10 + 2\sqrt 3 }}{{11}}} \right)\] or \[y = 2{\log _e}\left[ {\dfrac{{(2\sqrt 3 + 10)}}{{11}}} \right]\]
Hence, the correct option is A.
Note: The key concept to solving this type of question is to be very sure and attentive while solving it as it involves a lot of steps like integration, differentiation, rationalization, use of trigonometric identities, completing the square method, and substitution. Also, take proper care while applying the identities.
Formula Used:
$(x\;dy - y\;dx = d\;xy)$
$\left[ {\sin \;x = 2\sin \dfrac{x}{2}\cos \dfrac{x}{2}} \right]$
$\left[ {\cos \;x = 1 - 2{{\sin }^2}\dfrac{x}{2}} \right]$
$\left[ {\dfrac{1}{{\cos \;x}} = \sec x} \right]$
$\left[ {\dfrac{{\sin x}}{{\cos \;x}} = \tan \;x} \right]$
$\left[ {{{\sec }^2}x = 1 + {{\tan }^2}x} \right]$
$\left[ {{{(a + b)}^2} = {a^2} + {b^2} + 2ab} \right]$
$\left[ {\int {\dfrac{{dx}}{{{x^2} - {a^2}}} = \dfrac{1}{{2a}}\ln \left| {\dfrac{{x - a}}{{x + a}}} \right|} } \right]$
$\left[ {\ln \;a + \ln \;b = \ln \;ab} \right]$
Complete step by step Solution:
The given equation is
\[\cos \;x(3\sin \;x + \cos \;x + 3)dy = (1 + y\sin x(3\sin \,x + \cos \,x + 3))dx\]
Expanding R.H.S
\[\cos \;x(3\sin \;x + \cos \;x + 3)dy = dx + y\sin x(3\sin \,x + \cos \,x + 3)dx\]
Taking everything to L.H.S except $dx$
\[\cos \;x(3\sin \;x + \cos \;x + 3)dy - y\sin x(3\sin \,x + \cos \,x + 3)dx = dx\]
Taking \[(3\sin \,x + \cos \,x + 3)\] as common
$(\cos \,x\;dy - y\;\sin \;x\;dx)(3\sin \;x + \cos \;x + 3) = dx$
Using product rule$,$ i.e.$,$ $(x\;dy - y\;dx = d\;xy)$
$d(y - \cos \;x) = \dfrac{{dx}}{{3\sin \;x + \cos \;x + 3}}$ $\left[ {\because \cos \;x\,dy - y\sin \;x\;dx = d(y - \cos \;x)} \right]$
Integrating both sides$,$
$\int {d(y - \cos \;x)} = \int {\dfrac{{dx}}{{3\sin \;x + \cos \;x + 3}}} $
Using trigonometric identities$,$
$y\cos \;x = \int {\dfrac{{dx}}{{3\left( {2\sin \dfrac{x}{2}\cos \dfrac{x}{2}} \right) + \left( {1 - 2{{\sin }^2}\dfrac{x}{2}} \right) + 3}}} $ $\left[ {\because \sin \;x = 2\sin \dfrac{x}{2}\cos \dfrac{x}{2}} \right]$$,$$\left[ {\because \cos \;x = 1 - 2{{\sin }^2}\dfrac{x}{2}} \right]$
Solving it$,$
\[y\cos \;x = \int {\dfrac{{dx}}{{6\sin \dfrac{x}{2}\cos \dfrac{x}{2} - 2{{\sin }^2}\dfrac{x}{2} + 4}}} \]
Divide numerator and denominator by ${\cos ^2}\dfrac{x}{2}$
\[y\cos \;x = \int {\dfrac{{\left( {\dfrac{1}{{{{\cos }^2}\dfrac{x}{2}}}} \right)dx}}{{\left( {\dfrac{{6\sin \dfrac{x}{2}\cos \dfrac{x}{2}}}{{{{\cos }^2}\dfrac{x}{2}}}} \right) - \left( {\dfrac{{2{{\sin }^2}\dfrac{x}{2}}}{{{{\cos }^2}\dfrac{x}{2}}}} \right) + \left( {\dfrac{4}{{{{\cos }^2}\dfrac{x}{2}}}} \right)}}} \]
Solving it further$,$
$y\;\cos \;x = \dfrac{{{{\sec }^2}\dfrac{x}{2}dx}}{{6\tan \dfrac{x}{2} - 2{{\tan }^2}\dfrac{x}{2} + 4{{\sec }^2}\dfrac{x}{2}}}$ $\left[ {\because \dfrac{1}{{\cos \;x}} = \sec x} \right]$$,$$\left[ {\because \dfrac{{\sin x}}{{\cos \;x}} = \tan \;x} \right]$
Using trigonometric identity,
$y\;\cos \;x = \dfrac{{{{\sec }^2}\dfrac{x}{2}dx}}{{6\tan \dfrac{x}{2} - 2{{\tan }^2}\dfrac{x}{2} + 4\left( {1 + {{\tan }^2}\dfrac{x}{2}} \right)}}$ $\left[ {\because {{\sec }^2}x = 1 + {{\tan }^2}x} \right]$
Simplifying it$,$
$y\;\cos \;x = \dfrac{{{{\sec }^2}\dfrac{x}{2}dx}}{{6\tan \dfrac{x}{2} - 2{{\tan }^2}\dfrac{x}{2} + 4 + 4{{\tan }^2}\dfrac{x}{2}}}$
$y\;\cos \;x = \dfrac{{{{\sec }^2}\dfrac{x}{2}dx}}{{6\tan \dfrac{x}{2} + 2{{\tan }^2}\dfrac{x}{2} + 4}}$
Divide numerator and denominator by 2
\[y\;\cos \;x = \dfrac{{\dfrac{1}{2}{{\sec }^2}\dfrac{x}{2}dx}}{{3\tan \dfrac{x}{2} + {{\tan }^2}\dfrac{x}{2} + 2}}\] …………..equation $(1)$
Let $\tan \dfrac{x}{2} = t$ ………………equation $(2)$
Differentiating both sides$,$
$\dfrac{1}{2}{\sec ^2}\dfrac{x}{2}dx = dt$ ………………equation $(3)$
Substituting equation $(2)$ and $(3)$ in equation $(1),$
$y\;\cos \;x = \int {\dfrac{{dt}}{{3t + {t^2} + 2}}} $
Applying completing the square method in the denominator$,$ i.e.$,$ add and subtract $\dfrac{9}{4}$ $($square of half of the coefficient of t$)$ in the denominator
$y\;\cos \;x = \int {\dfrac{{dt}}{{\left( {3t + {t^2} + \dfrac{9}{4}} \right) - \dfrac{9}{4} + 2}}} $
$y\;\cos \;x = \int {\dfrac{{dt}}{{{{\left( {t + \dfrac{3}{2}} \right)}^2} - {{\left( {\dfrac{1}{2}} \right)}^2}}}} $ $\left[ {\because {{(a + b)}^2} = {a^2} + {b^2} + 2ab} \right]$
Integrating$,$
$y\;\cos \;x = \dfrac{1}{{2\left( {\dfrac{1}{2}} \right)}}\ln \left| {\dfrac{{\left( {t + \dfrac{3}{2}} \right) - \dfrac{1}{2}}}{{\left( {t + \dfrac{3}{2}} \right) + \dfrac{1}{2}}}} \right| + C$ ………………equation $(4)$ $\left[ {\because \int {\dfrac{{dx}}{{{x^2} - {a^2}}} = \dfrac{1}{{2a}}\ln \left| {\dfrac{{x - a}}{{x + a}}} \right|} } \right]$
Substituting equation $(2)$ in equation $(4)$ and solving it$,$
$y\;\cos \;x = \ln \left| {\dfrac{{\tan \dfrac{x}{2} + 1}}{{\tan \dfrac{x}{2} - 2}}} \right| + C$ ………………equation $(5)$
We are given that $y(0) = 0$
Using it in equation $(5),$
$0 = \ln \left( {\dfrac{1}{2}} \right) + C$
$C = \ln (2)$
Substituting the value of $C$ in equation $(5),$
\[y\;\cos \;x = \ln \left| {\dfrac{{\tan \dfrac{x}{2} + 1}}{{\tan \dfrac{x}{2} - 2}}} \right| + \ln (2)\]
For $x = \dfrac{\pi }{3},$
\[y\;\cos \left( {\dfrac{\pi }{3}} \right) = \ln \left| {\dfrac{{\tan \dfrac{\pi }{6} + 1}}{{\tan \dfrac{\pi }{6} - 2}}} \right| + \ln (2)\]
\[y\;\left( {\dfrac{1}{2}} \right) = \ln \left| {\dfrac{{\dfrac{1}{{\sqrt 3 }} + 1}}{{\dfrac{1}{{\sqrt 3 }} - 2}}} \right| + \ln (2)\]
On simplifying$,$
$y\left( {\dfrac{1}{2}} \right) = \ln \left( {\dfrac{{1 + \sqrt 3 }}{{1 - 2\sqrt 3 }}} \right) + \ln (2)$
Rationalizing$,$
\[y\left( {\dfrac{1}{2}} \right) = \ln \left| {\left( {\dfrac{{1 + \sqrt 3 }}{{1 - 2\sqrt 3 }}} \right)\left( {\dfrac{{1 + 2\sqrt 3 }}{{1 + 2\sqrt 3 }}} \right)} \right| + \ln (2)\]
Simplifying it further$,$
\[y\left( {\dfrac{1}{2}} \right) = \ln \left( {\dfrac{{5 + \sqrt 3 }}{{11}}} \right) + \ln (2)\]
\[y\left( {\dfrac{1}{2}} \right) = \ln \left( {\dfrac{{10 + 2\sqrt 3 }}{{11}}} \right)\] $\left[ {\because \ln \;a + \ln \;b = \ln \;ab} \right]$
Solving it to get the final answer$,$
\[y = 2\ln \left( {\dfrac{{10 + 2\sqrt 3 }}{{11}}} \right)\] or \[y = 2{\log _e}\left[ {\dfrac{{(2\sqrt 3 + 10)}}{{11}}} \right]\]
Hence, the correct option is A.
Note: The key concept to solving this type of question is to be very sure and attentive while solving it as it involves a lot of steps like integration, differentiation, rationalization, use of trigonometric identities, completing the square method, and substitution. Also, take proper care while applying the identities.
Recently Updated Pages
Geometry of Complex Numbers – Topics, Reception, Audience and Related Readings

JEE Main 2021 July 25 Shift 1 Question Paper with Answer Key

JEE Main 2021 July 22 Shift 2 Question Paper with Answer Key

JEE Main 2025 Session 2: Exam Date, Admit Card, Syllabus, & More

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

Trending doubts
Degree of Dissociation and Its Formula With Solved Example for JEE

Instantaneous Velocity - Formula based Examples for JEE

JEE Main Chemistry Question Paper with Answer Keys and Solutions

JEE Main Reservation Criteria 2025: SC, ST, EWS, and PwD Candidates

What is Normality in Chemistry?

Chemistry Electronic Configuration of D Block Elements: JEE Main 2025

Other Pages
Total MBBS Seats in India 2025: Government College Seat Matrix

NEET Total Marks 2025: Important Information and Key Updates

Neet Cut Off 2025 for MBBS in Tamilnadu: AIQ & State Quota Analysis

Karnataka NEET Cut off 2025 - Category Wise Cut Off Marks

NEET Marks vs Rank 2024|How to Calculate?

NEET 2025: All Major Changes in Application Process, Pattern and More
