
Let $y = y(x)$ be the solution of the differential equation \[\cos \;x(3\sin \;x + \cos \;x + 3)dy = (1 + y\sin x(3\sin \,x + \cos \,x + 3))dx,\;0 \leqslant x \leqslant \dfrac{\pi }{2},\;y(0) = 0\]. Then, $y\left( {\dfrac{\pi }{3}} \right)$ is equal to
(A) $2{\log _e}\left[ {\dfrac{{(2\sqrt 3 + 10)}}{{11}}} \right]$
(B) $2{\log _e}\left[ {\dfrac{{(\sqrt 3 + 7)}}{2}} \right]$
(C) $2{\log _e}\left[ {\dfrac{{(3\sqrt 3 - 8)}}{4}} \right]$
(D) $2{\log _e}\left[ {\dfrac{{(2\sqrt 3 + 9)}}{6}} \right]$
Answer
217.5k+ views
Hint: To solve this question, we will first expand R.H.S then we will simplify it using the product rule and integrate it. Further, we will use suitable trigonometric identities to get a more simplified equation. Next, we will use differentiation, substitution, completing the square method, and rationalization to get the final answer.
Formula Used:
$(x\;dy - y\;dx = d\;xy)$
$\left[ {\sin \;x = 2\sin \dfrac{x}{2}\cos \dfrac{x}{2}} \right]$
$\left[ {\cos \;x = 1 - 2{{\sin }^2}\dfrac{x}{2}} \right]$
$\left[ {\dfrac{1}{{\cos \;x}} = \sec x} \right]$
$\left[ {\dfrac{{\sin x}}{{\cos \;x}} = \tan \;x} \right]$
$\left[ {{{\sec }^2}x = 1 + {{\tan }^2}x} \right]$
$\left[ {{{(a + b)}^2} = {a^2} + {b^2} + 2ab} \right]$
$\left[ {\int {\dfrac{{dx}}{{{x^2} - {a^2}}} = \dfrac{1}{{2a}}\ln \left| {\dfrac{{x - a}}{{x + a}}} \right|} } \right]$
$\left[ {\ln \;a + \ln \;b = \ln \;ab} \right]$
Complete step by step Solution:
The given equation is
\[\cos \;x(3\sin \;x + \cos \;x + 3)dy = (1 + y\sin x(3\sin \,x + \cos \,x + 3))dx\]
Expanding R.H.S
\[\cos \;x(3\sin \;x + \cos \;x + 3)dy = dx + y\sin x(3\sin \,x + \cos \,x + 3)dx\]
Taking everything to L.H.S except $dx$
\[\cos \;x(3\sin \;x + \cos \;x + 3)dy - y\sin x(3\sin \,x + \cos \,x + 3)dx = dx\]
Taking \[(3\sin \,x + \cos \,x + 3)\] as common
$(\cos \,x\;dy - y\;\sin \;x\;dx)(3\sin \;x + \cos \;x + 3) = dx$
Using product rule$,$ i.e.$,$ $(x\;dy - y\;dx = d\;xy)$
$d(y - \cos \;x) = \dfrac{{dx}}{{3\sin \;x + \cos \;x + 3}}$ $\left[ {\because \cos \;x\,dy - y\sin \;x\;dx = d(y - \cos \;x)} \right]$
Integrating both sides$,$
$\int {d(y - \cos \;x)} = \int {\dfrac{{dx}}{{3\sin \;x + \cos \;x + 3}}} $
Using trigonometric identities$,$
$y\cos \;x = \int {\dfrac{{dx}}{{3\left( {2\sin \dfrac{x}{2}\cos \dfrac{x}{2}} \right) + \left( {1 - 2{{\sin }^2}\dfrac{x}{2}} \right) + 3}}} $ $\left[ {\because \sin \;x = 2\sin \dfrac{x}{2}\cos \dfrac{x}{2}} \right]$$,$$\left[ {\because \cos \;x = 1 - 2{{\sin }^2}\dfrac{x}{2}} \right]$
Solving it$,$
\[y\cos \;x = \int {\dfrac{{dx}}{{6\sin \dfrac{x}{2}\cos \dfrac{x}{2} - 2{{\sin }^2}\dfrac{x}{2} + 4}}} \]
Divide numerator and denominator by ${\cos ^2}\dfrac{x}{2}$
\[y\cos \;x = \int {\dfrac{{\left( {\dfrac{1}{{{{\cos }^2}\dfrac{x}{2}}}} \right)dx}}{{\left( {\dfrac{{6\sin \dfrac{x}{2}\cos \dfrac{x}{2}}}{{{{\cos }^2}\dfrac{x}{2}}}} \right) - \left( {\dfrac{{2{{\sin }^2}\dfrac{x}{2}}}{{{{\cos }^2}\dfrac{x}{2}}}} \right) + \left( {\dfrac{4}{{{{\cos }^2}\dfrac{x}{2}}}} \right)}}} \]
Solving it further$,$
$y\;\cos \;x = \dfrac{{{{\sec }^2}\dfrac{x}{2}dx}}{{6\tan \dfrac{x}{2} - 2{{\tan }^2}\dfrac{x}{2} + 4{{\sec }^2}\dfrac{x}{2}}}$ $\left[ {\because \dfrac{1}{{\cos \;x}} = \sec x} \right]$$,$$\left[ {\because \dfrac{{\sin x}}{{\cos \;x}} = \tan \;x} \right]$
Using trigonometric identity,
$y\;\cos \;x = \dfrac{{{{\sec }^2}\dfrac{x}{2}dx}}{{6\tan \dfrac{x}{2} - 2{{\tan }^2}\dfrac{x}{2} + 4\left( {1 + {{\tan }^2}\dfrac{x}{2}} \right)}}$ $\left[ {\because {{\sec }^2}x = 1 + {{\tan }^2}x} \right]$
Simplifying it$,$
$y\;\cos \;x = \dfrac{{{{\sec }^2}\dfrac{x}{2}dx}}{{6\tan \dfrac{x}{2} - 2{{\tan }^2}\dfrac{x}{2} + 4 + 4{{\tan }^2}\dfrac{x}{2}}}$
$y\;\cos \;x = \dfrac{{{{\sec }^2}\dfrac{x}{2}dx}}{{6\tan \dfrac{x}{2} + 2{{\tan }^2}\dfrac{x}{2} + 4}}$
Divide numerator and denominator by 2
\[y\;\cos \;x = \dfrac{{\dfrac{1}{2}{{\sec }^2}\dfrac{x}{2}dx}}{{3\tan \dfrac{x}{2} + {{\tan }^2}\dfrac{x}{2} + 2}}\] …………..equation $(1)$
Let $\tan \dfrac{x}{2} = t$ ………………equation $(2)$
Differentiating both sides$,$
$\dfrac{1}{2}{\sec ^2}\dfrac{x}{2}dx = dt$ ………………equation $(3)$
Substituting equation $(2)$ and $(3)$ in equation $(1),$
$y\;\cos \;x = \int {\dfrac{{dt}}{{3t + {t^2} + 2}}} $
Applying completing the square method in the denominator$,$ i.e.$,$ add and subtract $\dfrac{9}{4}$ $($square of half of the coefficient of t$)$ in the denominator
$y\;\cos \;x = \int {\dfrac{{dt}}{{\left( {3t + {t^2} + \dfrac{9}{4}} \right) - \dfrac{9}{4} + 2}}} $
$y\;\cos \;x = \int {\dfrac{{dt}}{{{{\left( {t + \dfrac{3}{2}} \right)}^2} - {{\left( {\dfrac{1}{2}} \right)}^2}}}} $ $\left[ {\because {{(a + b)}^2} = {a^2} + {b^2} + 2ab} \right]$
Integrating$,$
$y\;\cos \;x = \dfrac{1}{{2\left( {\dfrac{1}{2}} \right)}}\ln \left| {\dfrac{{\left( {t + \dfrac{3}{2}} \right) - \dfrac{1}{2}}}{{\left( {t + \dfrac{3}{2}} \right) + \dfrac{1}{2}}}} \right| + C$ ………………equation $(4)$ $\left[ {\because \int {\dfrac{{dx}}{{{x^2} - {a^2}}} = \dfrac{1}{{2a}}\ln \left| {\dfrac{{x - a}}{{x + a}}} \right|} } \right]$
Substituting equation $(2)$ in equation $(4)$ and solving it$,$
$y\;\cos \;x = \ln \left| {\dfrac{{\tan \dfrac{x}{2} + 1}}{{\tan \dfrac{x}{2} - 2}}} \right| + C$ ………………equation $(5)$
We are given that $y(0) = 0$
Using it in equation $(5),$
$0 = \ln \left( {\dfrac{1}{2}} \right) + C$
$C = \ln (2)$
Substituting the value of $C$ in equation $(5),$
\[y\;\cos \;x = \ln \left| {\dfrac{{\tan \dfrac{x}{2} + 1}}{{\tan \dfrac{x}{2} - 2}}} \right| + \ln (2)\]
For $x = \dfrac{\pi }{3},$
\[y\;\cos \left( {\dfrac{\pi }{3}} \right) = \ln \left| {\dfrac{{\tan \dfrac{\pi }{6} + 1}}{{\tan \dfrac{\pi }{6} - 2}}} \right| + \ln (2)\]
\[y\;\left( {\dfrac{1}{2}} \right) = \ln \left| {\dfrac{{\dfrac{1}{{\sqrt 3 }} + 1}}{{\dfrac{1}{{\sqrt 3 }} - 2}}} \right| + \ln (2)\]
On simplifying$,$
$y\left( {\dfrac{1}{2}} \right) = \ln \left( {\dfrac{{1 + \sqrt 3 }}{{1 - 2\sqrt 3 }}} \right) + \ln (2)$
Rationalizing$,$
\[y\left( {\dfrac{1}{2}} \right) = \ln \left| {\left( {\dfrac{{1 + \sqrt 3 }}{{1 - 2\sqrt 3 }}} \right)\left( {\dfrac{{1 + 2\sqrt 3 }}{{1 + 2\sqrt 3 }}} \right)} \right| + \ln (2)\]
Simplifying it further$,$
\[y\left( {\dfrac{1}{2}} \right) = \ln \left( {\dfrac{{5 + \sqrt 3 }}{{11}}} \right) + \ln (2)\]
\[y\left( {\dfrac{1}{2}} \right) = \ln \left( {\dfrac{{10 + 2\sqrt 3 }}{{11}}} \right)\] $\left[ {\because \ln \;a + \ln \;b = \ln \;ab} \right]$
Solving it to get the final answer$,$
\[y = 2\ln \left( {\dfrac{{10 + 2\sqrt 3 }}{{11}}} \right)\] or \[y = 2{\log _e}\left[ {\dfrac{{(2\sqrt 3 + 10)}}{{11}}} \right]\]
Hence, the correct option is A.
Note: The key concept to solving this type of question is to be very sure and attentive while solving it as it involves a lot of steps like integration, differentiation, rationalization, use of trigonometric identities, completing the square method, and substitution. Also, take proper care while applying the identities.
Formula Used:
$(x\;dy - y\;dx = d\;xy)$
$\left[ {\sin \;x = 2\sin \dfrac{x}{2}\cos \dfrac{x}{2}} \right]$
$\left[ {\cos \;x = 1 - 2{{\sin }^2}\dfrac{x}{2}} \right]$
$\left[ {\dfrac{1}{{\cos \;x}} = \sec x} \right]$
$\left[ {\dfrac{{\sin x}}{{\cos \;x}} = \tan \;x} \right]$
$\left[ {{{\sec }^2}x = 1 + {{\tan }^2}x} \right]$
$\left[ {{{(a + b)}^2} = {a^2} + {b^2} + 2ab} \right]$
$\left[ {\int {\dfrac{{dx}}{{{x^2} - {a^2}}} = \dfrac{1}{{2a}}\ln \left| {\dfrac{{x - a}}{{x + a}}} \right|} } \right]$
$\left[ {\ln \;a + \ln \;b = \ln \;ab} \right]$
Complete step by step Solution:
The given equation is
\[\cos \;x(3\sin \;x + \cos \;x + 3)dy = (1 + y\sin x(3\sin \,x + \cos \,x + 3))dx\]
Expanding R.H.S
\[\cos \;x(3\sin \;x + \cos \;x + 3)dy = dx + y\sin x(3\sin \,x + \cos \,x + 3)dx\]
Taking everything to L.H.S except $dx$
\[\cos \;x(3\sin \;x + \cos \;x + 3)dy - y\sin x(3\sin \,x + \cos \,x + 3)dx = dx\]
Taking \[(3\sin \,x + \cos \,x + 3)\] as common
$(\cos \,x\;dy - y\;\sin \;x\;dx)(3\sin \;x + \cos \;x + 3) = dx$
Using product rule$,$ i.e.$,$ $(x\;dy - y\;dx = d\;xy)$
$d(y - \cos \;x) = \dfrac{{dx}}{{3\sin \;x + \cos \;x + 3}}$ $\left[ {\because \cos \;x\,dy - y\sin \;x\;dx = d(y - \cos \;x)} \right]$
Integrating both sides$,$
$\int {d(y - \cos \;x)} = \int {\dfrac{{dx}}{{3\sin \;x + \cos \;x + 3}}} $
Using trigonometric identities$,$
$y\cos \;x = \int {\dfrac{{dx}}{{3\left( {2\sin \dfrac{x}{2}\cos \dfrac{x}{2}} \right) + \left( {1 - 2{{\sin }^2}\dfrac{x}{2}} \right) + 3}}} $ $\left[ {\because \sin \;x = 2\sin \dfrac{x}{2}\cos \dfrac{x}{2}} \right]$$,$$\left[ {\because \cos \;x = 1 - 2{{\sin }^2}\dfrac{x}{2}} \right]$
Solving it$,$
\[y\cos \;x = \int {\dfrac{{dx}}{{6\sin \dfrac{x}{2}\cos \dfrac{x}{2} - 2{{\sin }^2}\dfrac{x}{2} + 4}}} \]
Divide numerator and denominator by ${\cos ^2}\dfrac{x}{2}$
\[y\cos \;x = \int {\dfrac{{\left( {\dfrac{1}{{{{\cos }^2}\dfrac{x}{2}}}} \right)dx}}{{\left( {\dfrac{{6\sin \dfrac{x}{2}\cos \dfrac{x}{2}}}{{{{\cos }^2}\dfrac{x}{2}}}} \right) - \left( {\dfrac{{2{{\sin }^2}\dfrac{x}{2}}}{{{{\cos }^2}\dfrac{x}{2}}}} \right) + \left( {\dfrac{4}{{{{\cos }^2}\dfrac{x}{2}}}} \right)}}} \]
Solving it further$,$
$y\;\cos \;x = \dfrac{{{{\sec }^2}\dfrac{x}{2}dx}}{{6\tan \dfrac{x}{2} - 2{{\tan }^2}\dfrac{x}{2} + 4{{\sec }^2}\dfrac{x}{2}}}$ $\left[ {\because \dfrac{1}{{\cos \;x}} = \sec x} \right]$$,$$\left[ {\because \dfrac{{\sin x}}{{\cos \;x}} = \tan \;x} \right]$
Using trigonometric identity,
$y\;\cos \;x = \dfrac{{{{\sec }^2}\dfrac{x}{2}dx}}{{6\tan \dfrac{x}{2} - 2{{\tan }^2}\dfrac{x}{2} + 4\left( {1 + {{\tan }^2}\dfrac{x}{2}} \right)}}$ $\left[ {\because {{\sec }^2}x = 1 + {{\tan }^2}x} \right]$
Simplifying it$,$
$y\;\cos \;x = \dfrac{{{{\sec }^2}\dfrac{x}{2}dx}}{{6\tan \dfrac{x}{2} - 2{{\tan }^2}\dfrac{x}{2} + 4 + 4{{\tan }^2}\dfrac{x}{2}}}$
$y\;\cos \;x = \dfrac{{{{\sec }^2}\dfrac{x}{2}dx}}{{6\tan \dfrac{x}{2} + 2{{\tan }^2}\dfrac{x}{2} + 4}}$
Divide numerator and denominator by 2
\[y\;\cos \;x = \dfrac{{\dfrac{1}{2}{{\sec }^2}\dfrac{x}{2}dx}}{{3\tan \dfrac{x}{2} + {{\tan }^2}\dfrac{x}{2} + 2}}\] …………..equation $(1)$
Let $\tan \dfrac{x}{2} = t$ ………………equation $(2)$
Differentiating both sides$,$
$\dfrac{1}{2}{\sec ^2}\dfrac{x}{2}dx = dt$ ………………equation $(3)$
Substituting equation $(2)$ and $(3)$ in equation $(1),$
$y\;\cos \;x = \int {\dfrac{{dt}}{{3t + {t^2} + 2}}} $
Applying completing the square method in the denominator$,$ i.e.$,$ add and subtract $\dfrac{9}{4}$ $($square of half of the coefficient of t$)$ in the denominator
$y\;\cos \;x = \int {\dfrac{{dt}}{{\left( {3t + {t^2} + \dfrac{9}{4}} \right) - \dfrac{9}{4} + 2}}} $
$y\;\cos \;x = \int {\dfrac{{dt}}{{{{\left( {t + \dfrac{3}{2}} \right)}^2} - {{\left( {\dfrac{1}{2}} \right)}^2}}}} $ $\left[ {\because {{(a + b)}^2} = {a^2} + {b^2} + 2ab} \right]$
Integrating$,$
$y\;\cos \;x = \dfrac{1}{{2\left( {\dfrac{1}{2}} \right)}}\ln \left| {\dfrac{{\left( {t + \dfrac{3}{2}} \right) - \dfrac{1}{2}}}{{\left( {t + \dfrac{3}{2}} \right) + \dfrac{1}{2}}}} \right| + C$ ………………equation $(4)$ $\left[ {\because \int {\dfrac{{dx}}{{{x^2} - {a^2}}} = \dfrac{1}{{2a}}\ln \left| {\dfrac{{x - a}}{{x + a}}} \right|} } \right]$
Substituting equation $(2)$ in equation $(4)$ and solving it$,$
$y\;\cos \;x = \ln \left| {\dfrac{{\tan \dfrac{x}{2} + 1}}{{\tan \dfrac{x}{2} - 2}}} \right| + C$ ………………equation $(5)$
We are given that $y(0) = 0$
Using it in equation $(5),$
$0 = \ln \left( {\dfrac{1}{2}} \right) + C$
$C = \ln (2)$
Substituting the value of $C$ in equation $(5),$
\[y\;\cos \;x = \ln \left| {\dfrac{{\tan \dfrac{x}{2} + 1}}{{\tan \dfrac{x}{2} - 2}}} \right| + \ln (2)\]
For $x = \dfrac{\pi }{3},$
\[y\;\cos \left( {\dfrac{\pi }{3}} \right) = \ln \left| {\dfrac{{\tan \dfrac{\pi }{6} + 1}}{{\tan \dfrac{\pi }{6} - 2}}} \right| + \ln (2)\]
\[y\;\left( {\dfrac{1}{2}} \right) = \ln \left| {\dfrac{{\dfrac{1}{{\sqrt 3 }} + 1}}{{\dfrac{1}{{\sqrt 3 }} - 2}}} \right| + \ln (2)\]
On simplifying$,$
$y\left( {\dfrac{1}{2}} \right) = \ln \left( {\dfrac{{1 + \sqrt 3 }}{{1 - 2\sqrt 3 }}} \right) + \ln (2)$
Rationalizing$,$
\[y\left( {\dfrac{1}{2}} \right) = \ln \left| {\left( {\dfrac{{1 + \sqrt 3 }}{{1 - 2\sqrt 3 }}} \right)\left( {\dfrac{{1 + 2\sqrt 3 }}{{1 + 2\sqrt 3 }}} \right)} \right| + \ln (2)\]
Simplifying it further$,$
\[y\left( {\dfrac{1}{2}} \right) = \ln \left( {\dfrac{{5 + \sqrt 3 }}{{11}}} \right) + \ln (2)\]
\[y\left( {\dfrac{1}{2}} \right) = \ln \left( {\dfrac{{10 + 2\sqrt 3 }}{{11}}} \right)\] $\left[ {\because \ln \;a + \ln \;b = \ln \;ab} \right]$
Solving it to get the final answer$,$
\[y = 2\ln \left( {\dfrac{{10 + 2\sqrt 3 }}{{11}}} \right)\] or \[y = 2{\log _e}\left[ {\dfrac{{(2\sqrt 3 + 10)}}{{11}}} \right]\]
Hence, the correct option is A.
Note: The key concept to solving this type of question is to be very sure and attentive while solving it as it involves a lot of steps like integration, differentiation, rationalization, use of trigonometric identities, completing the square method, and substitution. Also, take proper care while applying the identities.
Recently Updated Pages
Area vs Volume: Key Differences Explained for Students

Mutually Exclusive vs Independent Events: Key Differences Explained

Addition of Three Vectors: Methods & Examples

Addition of Vectors: Simple Guide for Students

Algebra Made Easy: Step-by-Step Guide for Students

Relations and Functions: Complete Guide for Students

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

Understanding Collisions: Types and Examples for Students

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Understanding Atomic Structure for Beginners

Ideal and Non-Ideal Solutions Explained for Class 12 Chemistry

Degree of Dissociation: Meaning, Formula, Calculation & Uses

Understanding Electromagnetic Waves and Their Importance

Understanding the Electric Field of a Uniformly Charged Ring

