
Let $y = y(x)$ be the solution of the differential equation \[\cos \;x(3\sin \;x + \cos \;x + 3)dy = (1 + y\sin x(3\sin \,x + \cos \,x + 3))dx,\;0 \leqslant x \leqslant \dfrac{\pi }{2},\;y(0) = 0\]. Then, $y\left( {\dfrac{\pi }{3}} \right)$ is equal to
(A) $2{\log _e}\left[ {\dfrac{{(2\sqrt 3 + 10)}}{{11}}} \right]$
(B) $2{\log _e}\left[ {\dfrac{{(\sqrt 3 + 7)}}{2}} \right]$
(C) $2{\log _e}\left[ {\dfrac{{(3\sqrt 3 - 8)}}{4}} \right]$
(D) $2{\log _e}\left[ {\dfrac{{(2\sqrt 3 + 9)}}{6}} \right]$
Answer
164.7k+ views
Hint: To solve this question, we will first expand R.H.S then we will simplify it using the product rule and integrate it. Further, we will use suitable trigonometric identities to get a more simplified equation. Next, we will use differentiation, substitution, completing the square method, and rationalization to get the final answer.
Formula Used:
$(x\;dy - y\;dx = d\;xy)$
$\left[ {\sin \;x = 2\sin \dfrac{x}{2}\cos \dfrac{x}{2}} \right]$
$\left[ {\cos \;x = 1 - 2{{\sin }^2}\dfrac{x}{2}} \right]$
$\left[ {\dfrac{1}{{\cos \;x}} = \sec x} \right]$
$\left[ {\dfrac{{\sin x}}{{\cos \;x}} = \tan \;x} \right]$
$\left[ {{{\sec }^2}x = 1 + {{\tan }^2}x} \right]$
$\left[ {{{(a + b)}^2} = {a^2} + {b^2} + 2ab} \right]$
$\left[ {\int {\dfrac{{dx}}{{{x^2} - {a^2}}} = \dfrac{1}{{2a}}\ln \left| {\dfrac{{x - a}}{{x + a}}} \right|} } \right]$
$\left[ {\ln \;a + \ln \;b = \ln \;ab} \right]$
Complete step by step Solution:
The given equation is
\[\cos \;x(3\sin \;x + \cos \;x + 3)dy = (1 + y\sin x(3\sin \,x + \cos \,x + 3))dx\]
Expanding R.H.S
\[\cos \;x(3\sin \;x + \cos \;x + 3)dy = dx + y\sin x(3\sin \,x + \cos \,x + 3)dx\]
Taking everything to L.H.S except $dx$
\[\cos \;x(3\sin \;x + \cos \;x + 3)dy - y\sin x(3\sin \,x + \cos \,x + 3)dx = dx\]
Taking \[(3\sin \,x + \cos \,x + 3)\] as common
$(\cos \,x\;dy - y\;\sin \;x\;dx)(3\sin \;x + \cos \;x + 3) = dx$
Using product rule$,$ i.e.$,$ $(x\;dy - y\;dx = d\;xy)$
$d(y - \cos \;x) = \dfrac{{dx}}{{3\sin \;x + \cos \;x + 3}}$ $\left[ {\because \cos \;x\,dy - y\sin \;x\;dx = d(y - \cos \;x)} \right]$
Integrating both sides$,$
$\int {d(y - \cos \;x)} = \int {\dfrac{{dx}}{{3\sin \;x + \cos \;x + 3}}} $
Using trigonometric identities$,$
$y\cos \;x = \int {\dfrac{{dx}}{{3\left( {2\sin \dfrac{x}{2}\cos \dfrac{x}{2}} \right) + \left( {1 - 2{{\sin }^2}\dfrac{x}{2}} \right) + 3}}} $ $\left[ {\because \sin \;x = 2\sin \dfrac{x}{2}\cos \dfrac{x}{2}} \right]$$,$$\left[ {\because \cos \;x = 1 - 2{{\sin }^2}\dfrac{x}{2}} \right]$
Solving it$,$
\[y\cos \;x = \int {\dfrac{{dx}}{{6\sin \dfrac{x}{2}\cos \dfrac{x}{2} - 2{{\sin }^2}\dfrac{x}{2} + 4}}} \]
Divide numerator and denominator by ${\cos ^2}\dfrac{x}{2}$
\[y\cos \;x = \int {\dfrac{{\left( {\dfrac{1}{{{{\cos }^2}\dfrac{x}{2}}}} \right)dx}}{{\left( {\dfrac{{6\sin \dfrac{x}{2}\cos \dfrac{x}{2}}}{{{{\cos }^2}\dfrac{x}{2}}}} \right) - \left( {\dfrac{{2{{\sin }^2}\dfrac{x}{2}}}{{{{\cos }^2}\dfrac{x}{2}}}} \right) + \left( {\dfrac{4}{{{{\cos }^2}\dfrac{x}{2}}}} \right)}}} \]
Solving it further$,$
$y\;\cos \;x = \dfrac{{{{\sec }^2}\dfrac{x}{2}dx}}{{6\tan \dfrac{x}{2} - 2{{\tan }^2}\dfrac{x}{2} + 4{{\sec }^2}\dfrac{x}{2}}}$ $\left[ {\because \dfrac{1}{{\cos \;x}} = \sec x} \right]$$,$$\left[ {\because \dfrac{{\sin x}}{{\cos \;x}} = \tan \;x} \right]$
Using trigonometric identity,
$y\;\cos \;x = \dfrac{{{{\sec }^2}\dfrac{x}{2}dx}}{{6\tan \dfrac{x}{2} - 2{{\tan }^2}\dfrac{x}{2} + 4\left( {1 + {{\tan }^2}\dfrac{x}{2}} \right)}}$ $\left[ {\because {{\sec }^2}x = 1 + {{\tan }^2}x} \right]$
Simplifying it$,$
$y\;\cos \;x = \dfrac{{{{\sec }^2}\dfrac{x}{2}dx}}{{6\tan \dfrac{x}{2} - 2{{\tan }^2}\dfrac{x}{2} + 4 + 4{{\tan }^2}\dfrac{x}{2}}}$
$y\;\cos \;x = \dfrac{{{{\sec }^2}\dfrac{x}{2}dx}}{{6\tan \dfrac{x}{2} + 2{{\tan }^2}\dfrac{x}{2} + 4}}$
Divide numerator and denominator by 2
\[y\;\cos \;x = \dfrac{{\dfrac{1}{2}{{\sec }^2}\dfrac{x}{2}dx}}{{3\tan \dfrac{x}{2} + {{\tan }^2}\dfrac{x}{2} + 2}}\] …………..equation $(1)$
Let $\tan \dfrac{x}{2} = t$ ………………equation $(2)$
Differentiating both sides$,$
$\dfrac{1}{2}{\sec ^2}\dfrac{x}{2}dx = dt$ ………………equation $(3)$
Substituting equation $(2)$ and $(3)$ in equation $(1),$
$y\;\cos \;x = \int {\dfrac{{dt}}{{3t + {t^2} + 2}}} $
Applying completing the square method in the denominator$,$ i.e.$,$ add and subtract $\dfrac{9}{4}$ $($square of half of the coefficient of t$)$ in the denominator
$y\;\cos \;x = \int {\dfrac{{dt}}{{\left( {3t + {t^2} + \dfrac{9}{4}} \right) - \dfrac{9}{4} + 2}}} $
$y\;\cos \;x = \int {\dfrac{{dt}}{{{{\left( {t + \dfrac{3}{2}} \right)}^2} - {{\left( {\dfrac{1}{2}} \right)}^2}}}} $ $\left[ {\because {{(a + b)}^2} = {a^2} + {b^2} + 2ab} \right]$
Integrating$,$
$y\;\cos \;x = \dfrac{1}{{2\left( {\dfrac{1}{2}} \right)}}\ln \left| {\dfrac{{\left( {t + \dfrac{3}{2}} \right) - \dfrac{1}{2}}}{{\left( {t + \dfrac{3}{2}} \right) + \dfrac{1}{2}}}} \right| + C$ ………………equation $(4)$ $\left[ {\because \int {\dfrac{{dx}}{{{x^2} - {a^2}}} = \dfrac{1}{{2a}}\ln \left| {\dfrac{{x - a}}{{x + a}}} \right|} } \right]$
Substituting equation $(2)$ in equation $(4)$ and solving it$,$
$y\;\cos \;x = \ln \left| {\dfrac{{\tan \dfrac{x}{2} + 1}}{{\tan \dfrac{x}{2} - 2}}} \right| + C$ ………………equation $(5)$
We are given that $y(0) = 0$
Using it in equation $(5),$
$0 = \ln \left( {\dfrac{1}{2}} \right) + C$
$C = \ln (2)$
Substituting the value of $C$ in equation $(5),$
\[y\;\cos \;x = \ln \left| {\dfrac{{\tan \dfrac{x}{2} + 1}}{{\tan \dfrac{x}{2} - 2}}} \right| + \ln (2)\]
For $x = \dfrac{\pi }{3},$
\[y\;\cos \left( {\dfrac{\pi }{3}} \right) = \ln \left| {\dfrac{{\tan \dfrac{\pi }{6} + 1}}{{\tan \dfrac{\pi }{6} - 2}}} \right| + \ln (2)\]
\[y\;\left( {\dfrac{1}{2}} \right) = \ln \left| {\dfrac{{\dfrac{1}{{\sqrt 3 }} + 1}}{{\dfrac{1}{{\sqrt 3 }} - 2}}} \right| + \ln (2)\]
On simplifying$,$
$y\left( {\dfrac{1}{2}} \right) = \ln \left( {\dfrac{{1 + \sqrt 3 }}{{1 - 2\sqrt 3 }}} \right) + \ln (2)$
Rationalizing$,$
\[y\left( {\dfrac{1}{2}} \right) = \ln \left| {\left( {\dfrac{{1 + \sqrt 3 }}{{1 - 2\sqrt 3 }}} \right)\left( {\dfrac{{1 + 2\sqrt 3 }}{{1 + 2\sqrt 3 }}} \right)} \right| + \ln (2)\]
Simplifying it further$,$
\[y\left( {\dfrac{1}{2}} \right) = \ln \left( {\dfrac{{5 + \sqrt 3 }}{{11}}} \right) + \ln (2)\]
\[y\left( {\dfrac{1}{2}} \right) = \ln \left( {\dfrac{{10 + 2\sqrt 3 }}{{11}}} \right)\] $\left[ {\because \ln \;a + \ln \;b = \ln \;ab} \right]$
Solving it to get the final answer$,$
\[y = 2\ln \left( {\dfrac{{10 + 2\sqrt 3 }}{{11}}} \right)\] or \[y = 2{\log _e}\left[ {\dfrac{{(2\sqrt 3 + 10)}}{{11}}} \right]\]
Hence, the correct option is A.
Note: The key concept to solving this type of question is to be very sure and attentive while solving it as it involves a lot of steps like integration, differentiation, rationalization, use of trigonometric identities, completing the square method, and substitution. Also, take proper care while applying the identities.
Formula Used:
$(x\;dy - y\;dx = d\;xy)$
$\left[ {\sin \;x = 2\sin \dfrac{x}{2}\cos \dfrac{x}{2}} \right]$
$\left[ {\cos \;x = 1 - 2{{\sin }^2}\dfrac{x}{2}} \right]$
$\left[ {\dfrac{1}{{\cos \;x}} = \sec x} \right]$
$\left[ {\dfrac{{\sin x}}{{\cos \;x}} = \tan \;x} \right]$
$\left[ {{{\sec }^2}x = 1 + {{\tan }^2}x} \right]$
$\left[ {{{(a + b)}^2} = {a^2} + {b^2} + 2ab} \right]$
$\left[ {\int {\dfrac{{dx}}{{{x^2} - {a^2}}} = \dfrac{1}{{2a}}\ln \left| {\dfrac{{x - a}}{{x + a}}} \right|} } \right]$
$\left[ {\ln \;a + \ln \;b = \ln \;ab} \right]$
Complete step by step Solution:
The given equation is
\[\cos \;x(3\sin \;x + \cos \;x + 3)dy = (1 + y\sin x(3\sin \,x + \cos \,x + 3))dx\]
Expanding R.H.S
\[\cos \;x(3\sin \;x + \cos \;x + 3)dy = dx + y\sin x(3\sin \,x + \cos \,x + 3)dx\]
Taking everything to L.H.S except $dx$
\[\cos \;x(3\sin \;x + \cos \;x + 3)dy - y\sin x(3\sin \,x + \cos \,x + 3)dx = dx\]
Taking \[(3\sin \,x + \cos \,x + 3)\] as common
$(\cos \,x\;dy - y\;\sin \;x\;dx)(3\sin \;x + \cos \;x + 3) = dx$
Using product rule$,$ i.e.$,$ $(x\;dy - y\;dx = d\;xy)$
$d(y - \cos \;x) = \dfrac{{dx}}{{3\sin \;x + \cos \;x + 3}}$ $\left[ {\because \cos \;x\,dy - y\sin \;x\;dx = d(y - \cos \;x)} \right]$
Integrating both sides$,$
$\int {d(y - \cos \;x)} = \int {\dfrac{{dx}}{{3\sin \;x + \cos \;x + 3}}} $
Using trigonometric identities$,$
$y\cos \;x = \int {\dfrac{{dx}}{{3\left( {2\sin \dfrac{x}{2}\cos \dfrac{x}{2}} \right) + \left( {1 - 2{{\sin }^2}\dfrac{x}{2}} \right) + 3}}} $ $\left[ {\because \sin \;x = 2\sin \dfrac{x}{2}\cos \dfrac{x}{2}} \right]$$,$$\left[ {\because \cos \;x = 1 - 2{{\sin }^2}\dfrac{x}{2}} \right]$
Solving it$,$
\[y\cos \;x = \int {\dfrac{{dx}}{{6\sin \dfrac{x}{2}\cos \dfrac{x}{2} - 2{{\sin }^2}\dfrac{x}{2} + 4}}} \]
Divide numerator and denominator by ${\cos ^2}\dfrac{x}{2}$
\[y\cos \;x = \int {\dfrac{{\left( {\dfrac{1}{{{{\cos }^2}\dfrac{x}{2}}}} \right)dx}}{{\left( {\dfrac{{6\sin \dfrac{x}{2}\cos \dfrac{x}{2}}}{{{{\cos }^2}\dfrac{x}{2}}}} \right) - \left( {\dfrac{{2{{\sin }^2}\dfrac{x}{2}}}{{{{\cos }^2}\dfrac{x}{2}}}} \right) + \left( {\dfrac{4}{{{{\cos }^2}\dfrac{x}{2}}}} \right)}}} \]
Solving it further$,$
$y\;\cos \;x = \dfrac{{{{\sec }^2}\dfrac{x}{2}dx}}{{6\tan \dfrac{x}{2} - 2{{\tan }^2}\dfrac{x}{2} + 4{{\sec }^2}\dfrac{x}{2}}}$ $\left[ {\because \dfrac{1}{{\cos \;x}} = \sec x} \right]$$,$$\left[ {\because \dfrac{{\sin x}}{{\cos \;x}} = \tan \;x} \right]$
Using trigonometric identity,
$y\;\cos \;x = \dfrac{{{{\sec }^2}\dfrac{x}{2}dx}}{{6\tan \dfrac{x}{2} - 2{{\tan }^2}\dfrac{x}{2} + 4\left( {1 + {{\tan }^2}\dfrac{x}{2}} \right)}}$ $\left[ {\because {{\sec }^2}x = 1 + {{\tan }^2}x} \right]$
Simplifying it$,$
$y\;\cos \;x = \dfrac{{{{\sec }^2}\dfrac{x}{2}dx}}{{6\tan \dfrac{x}{2} - 2{{\tan }^2}\dfrac{x}{2} + 4 + 4{{\tan }^2}\dfrac{x}{2}}}$
$y\;\cos \;x = \dfrac{{{{\sec }^2}\dfrac{x}{2}dx}}{{6\tan \dfrac{x}{2} + 2{{\tan }^2}\dfrac{x}{2} + 4}}$
Divide numerator and denominator by 2
\[y\;\cos \;x = \dfrac{{\dfrac{1}{2}{{\sec }^2}\dfrac{x}{2}dx}}{{3\tan \dfrac{x}{2} + {{\tan }^2}\dfrac{x}{2} + 2}}\] …………..equation $(1)$
Let $\tan \dfrac{x}{2} = t$ ………………equation $(2)$
Differentiating both sides$,$
$\dfrac{1}{2}{\sec ^2}\dfrac{x}{2}dx = dt$ ………………equation $(3)$
Substituting equation $(2)$ and $(3)$ in equation $(1),$
$y\;\cos \;x = \int {\dfrac{{dt}}{{3t + {t^2} + 2}}} $
Applying completing the square method in the denominator$,$ i.e.$,$ add and subtract $\dfrac{9}{4}$ $($square of half of the coefficient of t$)$ in the denominator
$y\;\cos \;x = \int {\dfrac{{dt}}{{\left( {3t + {t^2} + \dfrac{9}{4}} \right) - \dfrac{9}{4} + 2}}} $
$y\;\cos \;x = \int {\dfrac{{dt}}{{{{\left( {t + \dfrac{3}{2}} \right)}^2} - {{\left( {\dfrac{1}{2}} \right)}^2}}}} $ $\left[ {\because {{(a + b)}^2} = {a^2} + {b^2} + 2ab} \right]$
Integrating$,$
$y\;\cos \;x = \dfrac{1}{{2\left( {\dfrac{1}{2}} \right)}}\ln \left| {\dfrac{{\left( {t + \dfrac{3}{2}} \right) - \dfrac{1}{2}}}{{\left( {t + \dfrac{3}{2}} \right) + \dfrac{1}{2}}}} \right| + C$ ………………equation $(4)$ $\left[ {\because \int {\dfrac{{dx}}{{{x^2} - {a^2}}} = \dfrac{1}{{2a}}\ln \left| {\dfrac{{x - a}}{{x + a}}} \right|} } \right]$
Substituting equation $(2)$ in equation $(4)$ and solving it$,$
$y\;\cos \;x = \ln \left| {\dfrac{{\tan \dfrac{x}{2} + 1}}{{\tan \dfrac{x}{2} - 2}}} \right| + C$ ………………equation $(5)$
We are given that $y(0) = 0$
Using it in equation $(5),$
$0 = \ln \left( {\dfrac{1}{2}} \right) + C$
$C = \ln (2)$
Substituting the value of $C$ in equation $(5),$
\[y\;\cos \;x = \ln \left| {\dfrac{{\tan \dfrac{x}{2} + 1}}{{\tan \dfrac{x}{2} - 2}}} \right| + \ln (2)\]
For $x = \dfrac{\pi }{3},$
\[y\;\cos \left( {\dfrac{\pi }{3}} \right) = \ln \left| {\dfrac{{\tan \dfrac{\pi }{6} + 1}}{{\tan \dfrac{\pi }{6} - 2}}} \right| + \ln (2)\]
\[y\;\left( {\dfrac{1}{2}} \right) = \ln \left| {\dfrac{{\dfrac{1}{{\sqrt 3 }} + 1}}{{\dfrac{1}{{\sqrt 3 }} - 2}}} \right| + \ln (2)\]
On simplifying$,$
$y\left( {\dfrac{1}{2}} \right) = \ln \left( {\dfrac{{1 + \sqrt 3 }}{{1 - 2\sqrt 3 }}} \right) + \ln (2)$
Rationalizing$,$
\[y\left( {\dfrac{1}{2}} \right) = \ln \left| {\left( {\dfrac{{1 + \sqrt 3 }}{{1 - 2\sqrt 3 }}} \right)\left( {\dfrac{{1 + 2\sqrt 3 }}{{1 + 2\sqrt 3 }}} \right)} \right| + \ln (2)\]
Simplifying it further$,$
\[y\left( {\dfrac{1}{2}} \right) = \ln \left( {\dfrac{{5 + \sqrt 3 }}{{11}}} \right) + \ln (2)\]
\[y\left( {\dfrac{1}{2}} \right) = \ln \left( {\dfrac{{10 + 2\sqrt 3 }}{{11}}} \right)\] $\left[ {\because \ln \;a + \ln \;b = \ln \;ab} \right]$
Solving it to get the final answer$,$
\[y = 2\ln \left( {\dfrac{{10 + 2\sqrt 3 }}{{11}}} \right)\] or \[y = 2{\log _e}\left[ {\dfrac{{(2\sqrt 3 + 10)}}{{11}}} \right]\]
Hence, the correct option is A.
Note: The key concept to solving this type of question is to be very sure and attentive while solving it as it involves a lot of steps like integration, differentiation, rationalization, use of trigonometric identities, completing the square method, and substitution. Also, take proper care while applying the identities.
Recently Updated Pages
Environmental Chemistry Chapter for JEE Main Chemistry

Geometry of Complex Numbers – Topics, Reception, Audience and Related Readings

JEE Main 2021 July 25 Shift 1 Question Paper with Answer Key

JEE Main 2021 July 22 Shift 2 Question Paper with Answer Key

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

Atomic Structure - Electrons, Protons, Neutrons and Atomic Models

Displacement-Time Graph and Velocity-Time Graph for JEE

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Learn About Angle Of Deviation In Prism: JEE Main Physics 2025

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Degree of Dissociation and Its Formula With Solved Example for JEE

Instantaneous Velocity - Formula based Examples for JEE

JEE Main 2025: Conversion of Galvanometer Into Ammeter And Voltmeter in Physics

JEE Advanced 2025 Notes
