
Let \[\vec a = \hat i + \hat j + \sqrt 2 \hat k\], \[\vec b = {b_1}\hat i + {b_2}\hat j + \sqrt 2 \hat k\] and \[\vec c = 5\hat i + \hat j + \sqrt 2 \hat k\] be three vectors such that the projection vector of \[\vec b\] on \[\vec a\] is \[\vec a\]. If \[\vec a + \vec b\] is perpendicular to \[\vec c\], then \[\left| {\vec b} \right|\] is equal to
Answer
232.8k+ views
Hint: First we find out the projection of \[\vec b\] on \[\vec a\] by the rule and equal with \[\vec a\] and we get a equation of \[{b_1}\] and \[{b_2}\]. Also we find out \[\vec a + \vec b\] and then using the formula that \[\vec a + \vec b\] perpendicular to \[\vec c\] and we get another equation of \[{b_1}\] and \[{b_2}\]. Now solving two equations we get the value of \[{b_1}\] and \[{b_2}\], hence we find \[\left| {\vec b} \right|\] by using the formula.
Formula Used:The projection vector of \[\vec b\] on \[\vec a\] is \[\left( {\dfrac{{\vec a \cdot \vec b}}{{{{\left| {\vec a} \right|}^2}}}} \right) \cdot \vec a\]. Also if \[\vec a\] is perpendicular to \[\vec b\] then \[\vec a \cdot \vec b = 0\].
Complete step by step solution:\[\vec a \cdot \vec b\]
\[ = \left( {\hat i + \hat j + \sqrt 2 \hat k} \right) \cdot \left( {{b_1}\hat i + {b_2}\hat j + \sqrt 2 \hat k} \right)\]
\[ = {b_1} + {b_2} + 2\]
and \[\left| {\vec a} \right|\]
\[ = \sqrt {{1^2} + {1^2} + {{\left( {\sqrt 2 } \right)}^2}} \]
\[ = \sqrt {1 + 1 + 2} \]
\[ = \sqrt 4 \]
\[ = 2\].
Hence \[{\left| {\vec a} \right|^2} = 4\]. Also
\[\vec a + \vec b\]
\[ = \left( {\hat i + \hat j + \sqrt 2 \hat k} \right) + \left( {{b_1}\hat i + {b_2}\hat j + \sqrt 2 \hat k} \right)\]
\[ = \left( {{b_1} + 1} \right)\hat i + \left( {{b_2} + 1} \right)\hat j + 2\sqrt 2 \hat k\].
Now \[\vec a + \vec b\] is perpendicular to \[\vec c\], hence
\[\left( {\vec a + \vec b} \right) \cdot \vec c = 0\]
\[ \Rightarrow \left\{ {\left( {{b_1} + 1} \right)\hat i + \left( {{b_2} + 1} \right)\hat j + 2\sqrt 2 \hat k} \right\} \cdot \left( {5\hat i + \hat j + \sqrt 2 \hat k} \right) = 0\]
\[ \Rightarrow 5\left( {{b_1} + 1} \right) + \left( {{b_2} + 1} \right) + 4 = 0\]
\[ \Rightarrow 5{b_1} + 5 + {b_2} + 1 + 4 = 0\]
\[ \Rightarrow 5{b_1} + {b_2} = - 10\]-----(1).
Also the projection of \[\vec b\] on \[\vec a\] is \[\vec a\], hence
\[\left( {\dfrac{{\vec a \cdot \vec b}}{{{{\left| {\vec a} \right|}^2}}}} \right) \cdot \vec a = \vec a\]
\[ \Rightarrow \left( {\dfrac{{\vec a \cdot \vec b}}{{{{\left| {\vec a} \right|}^2}}}} \right) = 1\]
\[ \Rightarrow \dfrac{{{b_1} + {b_2} + 2}}{4} = 1\]
\[ \Rightarrow {b_1} + {b_2} + 2 = 4\]
\[ \Rightarrow {b_1} + {b_2} = 4 - 2\]
\[ \Rightarrow {b_1} + {b_2} = 2\]-----(2).
Solving (1) and (2), we get \[{b_1} = - 3\] and \[{b_2} = 5\]. Hence
\[\left| {\vec b} \right|\]
\[ = \sqrt {{b_1}^2 + {b_2}^2 + {{\left( {\sqrt 2 } \right)}^2}} \]
\[ = \sqrt {{{\left( { - 3} \right)}^2} + {5^2} + 2} \]
\[ = \sqrt {9 + 25 + 2} \]
\[ = \sqrt {36} \]
\[ = 6\].
Hence \[\left| {\vec b} \right| = 6\].>
Note: It is to be noted that the formula of the projection of \[\vec b\] on \[\vec a\] is \[\left( {\dfrac{{\vec a \cdot \vec b}}{{{{\left| {\vec a} \right|}^2}}}} \right)\] but not \[\left( {\dfrac{{\vec a \cdot \vec b}}{{\left| {\vec a} \right|}}} \right)\]. Also the formula of \[\left( {\vec a + \vec b} \right)\]perpendicular to \[\vec c\] is \[\left( {\vec a + \vec b} \right) \cdot \vec c\] but not \[\left( {\vec a + \vec b} \right) \times \vec c\].
Formula Used:The projection vector of \[\vec b\] on \[\vec a\] is \[\left( {\dfrac{{\vec a \cdot \vec b}}{{{{\left| {\vec a} \right|}^2}}}} \right) \cdot \vec a\]. Also if \[\vec a\] is perpendicular to \[\vec b\] then \[\vec a \cdot \vec b = 0\].
Complete step by step solution:\[\vec a \cdot \vec b\]
\[ = \left( {\hat i + \hat j + \sqrt 2 \hat k} \right) \cdot \left( {{b_1}\hat i + {b_2}\hat j + \sqrt 2 \hat k} \right)\]
\[ = {b_1} + {b_2} + 2\]
and \[\left| {\vec a} \right|\]
\[ = \sqrt {{1^2} + {1^2} + {{\left( {\sqrt 2 } \right)}^2}} \]
\[ = \sqrt {1 + 1 + 2} \]
\[ = \sqrt 4 \]
\[ = 2\].
Hence \[{\left| {\vec a} \right|^2} = 4\]. Also
\[\vec a + \vec b\]
\[ = \left( {\hat i + \hat j + \sqrt 2 \hat k} \right) + \left( {{b_1}\hat i + {b_2}\hat j + \sqrt 2 \hat k} \right)\]
\[ = \left( {{b_1} + 1} \right)\hat i + \left( {{b_2} + 1} \right)\hat j + 2\sqrt 2 \hat k\].
Now \[\vec a + \vec b\] is perpendicular to \[\vec c\], hence
\[\left( {\vec a + \vec b} \right) \cdot \vec c = 0\]
\[ \Rightarrow \left\{ {\left( {{b_1} + 1} \right)\hat i + \left( {{b_2} + 1} \right)\hat j + 2\sqrt 2 \hat k} \right\} \cdot \left( {5\hat i + \hat j + \sqrt 2 \hat k} \right) = 0\]
\[ \Rightarrow 5\left( {{b_1} + 1} \right) + \left( {{b_2} + 1} \right) + 4 = 0\]
\[ \Rightarrow 5{b_1} + 5 + {b_2} + 1 + 4 = 0\]
\[ \Rightarrow 5{b_1} + {b_2} = - 10\]-----(1).
Also the projection of \[\vec b\] on \[\vec a\] is \[\vec a\], hence
\[\left( {\dfrac{{\vec a \cdot \vec b}}{{{{\left| {\vec a} \right|}^2}}}} \right) \cdot \vec a = \vec a\]
\[ \Rightarrow \left( {\dfrac{{\vec a \cdot \vec b}}{{{{\left| {\vec a} \right|}^2}}}} \right) = 1\]
\[ \Rightarrow \dfrac{{{b_1} + {b_2} + 2}}{4} = 1\]
\[ \Rightarrow {b_1} + {b_2} + 2 = 4\]
\[ \Rightarrow {b_1} + {b_2} = 4 - 2\]
\[ \Rightarrow {b_1} + {b_2} = 2\]-----(2).
Solving (1) and (2), we get \[{b_1} = - 3\] and \[{b_2} = 5\]. Hence
\[\left| {\vec b} \right|\]
\[ = \sqrt {{b_1}^2 + {b_2}^2 + {{\left( {\sqrt 2 } \right)}^2}} \]
\[ = \sqrt {{{\left( { - 3} \right)}^2} + {5^2} + 2} \]
\[ = \sqrt {9 + 25 + 2} \]
\[ = \sqrt {36} \]
\[ = 6\].
Hence \[\left| {\vec b} \right| = 6\].>
Note: It is to be noted that the formula of the projection of \[\vec b\] on \[\vec a\] is \[\left( {\dfrac{{\vec a \cdot \vec b}}{{{{\left| {\vec a} \right|}^2}}}} \right)\] but not \[\left( {\dfrac{{\vec a \cdot \vec b}}{{\left| {\vec a} \right|}}} \right)\]. Also the formula of \[\left( {\vec a + \vec b} \right)\]perpendicular to \[\vec c\] is \[\left( {\vec a + \vec b} \right) \cdot \vec c\] but not \[\left( {\vec a + \vec b} \right) \times \vec c\].
Recently Updated Pages
Geometry of Complex Numbers Explained

JEE General Topics in Chemistry Important Concepts and Tips

JEE Extractive Metallurgy Important Concepts and Tips for Exam Preparation

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

Electricity and Magnetism Explained: Key Concepts & Applications

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Understanding the Electric Field of a Uniformly Charged Ring

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Derivation of Equation of Trajectory Explained for Students

Understanding Electromagnetic Waves and Their Importance

Understanding How a Current Loop Acts as a Magnetic Dipole

