
Let three vectors \[\overrightarrow{a}\] , \[\overrightarrow{b}\] and \[\overrightarrow{c}\] be such that \[\overrightarrow{c}\] is coplanar with \[\overrightarrow{a}\] and \[\overrightarrow{b}\] , \[\overrightarrow{a}.\overrightarrow{c} = 7\] and \[\overrightarrow{b}\] is perpendicular to \[\overrightarrow{c}\] , where \[\overrightarrow{a} = - \hat{i} + \hat{j} + \hat{k}\] and \[\overrightarrow{b} = 2\ \hat{i} + \hat{k}\] . Then the value of \[2 \mid \overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c} \mid^{2}\] is
Answer
217.5k+ views
Hint: In this question, we need to find the value of \[2 \mid \overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c} \mid^{2}\] . First we need to use the given conditions \[\overrightarrow{c}\] is coplanar with \[\overrightarrow{a}\] and \[\overrightarrow{b}\] and \[\overrightarrow{b}\] is perpendicular to \[\overrightarrow{c}\] . Next we need to find the value of \[\overrightarrow{c}\] with the help of \[\overrightarrow{a}\] and \[\overrightarrow{b}\] . Then substituting the values of \[\overrightarrow{a}\] , \[\overrightarrow{b}\ \] and \[\overrightarrow{c}\] . We can find the value of \[2 \mid \overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c} \mid^{2}\]
Complete step by step Solution:
Given that \[\overrightarrow{c}\] is coplanar with \[\overrightarrow{a}\] and \[\overrightarrow{b}\] and \[\overrightarrow{b}\] is perpendicular to \[\overrightarrow{c}\]
That is,
\[\overrightarrow{c} = \lambda(\overrightarrow{b}(\overrightarrow{a} \times \overrightarrow{b})\]
\[\overrightarrow{c} = \lambda\left( \left( \overrightarrow{b}.\overrightarrow{b} \right)\overrightarrow{a} - \left( \overrightarrow{\text{b.}}\overrightarrow{a} \right)\overrightarrow{b} \right)\] •••• (1)
First, we can find \[\overrightarrow{b}.\overrightarrow{b}\]
Given that \[\overrightarrow{b} = 2\ \hat{i} + \hat{k}\]
Now
\[\overrightarrow{b}.\overrightarrow{b} = (2\ \hat{i} + \hat{k}).(\ 2\ \hat{i} + \hat{k})\]
On solving,
We get,
\[\overrightarrow{b}.\overrightarrow{b} = \left( 2 \times 2 \right) + \left( 1 \times 1 \right)\]
On simplifying,
We get,
\[\overrightarrow{b}.\overrightarrow{b} = 5\]
Similarly we need to find \[\overrightarrow{b}.\overrightarrow{a}\]
Given that \[\overrightarrow{a} = - \hat{i} + \hat{j} + \hat{k}\] and \[\overrightarrow{b} = 2\ \hat{i} + \hat{k}\]
Now,
\[\overrightarrow{b}.\overrightarrow{a} = \left( 2\ \hat{i} + \hat{k} \right).\left( - \hat{i} + \hat{j} + \hat{k} \right)\]
On simplifying,
We get,
\[\overrightarrow{b}.\overrightarrow{a} = \left( 2 \times – 1) – (0 \times 1 \right) + (1 \times 1)\]
On further simplification,
We get,
\[\overrightarrow{b}.\overrightarrow{a} = - 2 + 1 = - 1\]
Now on substituting the values of \[\overrightarrow{b}.\overrightarrow{b}\] and \[\overrightarrow{b}.\overrightarrow{a}\] in (1) ,
We get,
\[\overrightarrow{c} = \lambda\left( 5(\overrightarrow{a}) – ( - 1)(\overrightarrow{b}) \right)\]
On substituting the value of \[\overrightarrow{a}\] and \[\overrightarrow{b}\] ,
We get,
\[\overrightarrow{c} = \lambda\left( 5\left( - \hat{i} + \hat{j} + \hat{k} \right) + (2\ \hat{i} + \hat{k}) \right)\]
On solving,
We get,
\[\overrightarrow{c} = \lambda\left( \left( - 5\hat{i} + 5\hat{j} + 5\hat{k} \right) + (2\ \hat{i} + \hat{k}) \right)\]
Again on solving,
We get,
\[\overrightarrow{c} = \lambda\left( \left( - 3\hat{i} + 5\hat{j} + 6\hat{k} \right) \right)\] ••• (2)
Also given that \[\overrightarrow{a}.\overrightarrow{c} = 7\]
On substituting \[\overrightarrow{a}\] and \[\overrightarrow{c}\],
We get,
\[( - \hat{i} + \hat{j} + \hat{k}).\lambda\left( - 3\hat{i} + 5\hat{j} + 6\hat{k} \right) = 7\]
On simplifying,
We get,
\[( - 1 \times – 3\lambda) + (1 \times 5\lambda) + (1 \times 6\lambda) = 7\]
On further simplification,
We get,
\[3\lambda + 5\lambda + 6\lambda = 7\]
In adding all,
We get,
\[14\lambda = 7\]
On dividing both sides by \[14\] ,
We get,
\[\lambda = \dfrac{1}{2}\]
Now on substituting the value of \[\lambda\] in \[\overrightarrow{c} = \lambda\left( - 3\hat{i} + 5\hat{j} + 6\hat{k} \right)\]
We get,
\[\overrightarrow{c} = \dfrac{1}{2}\left( - 3\hat{i} + 5\hat{j} + 6\hat{k} \right)\ \]
We need to find the value of \[2 \mid \overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c} \mid^{2}\]
On substituting all the values,
We get,
\[2 \mid \overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c} \mid^{2} = 2\left( \left| \left( - \hat{i} + \hat{j} + \hat{k} \right) + \left( 2\hat{i} + \hat{k} \right) + \dfrac{1}{2}\left( - 3\hat{i} + 5\hat{j} + 6\hat{k} \right) \right| \right)^{2}\]
On simplifying,
We get,
\[2 \mid \overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c} \mid^{2} = 2\left( \left| \left( - 1 + 2 - \dfrac{3}{2} \right)\hat{i} + \left( 1 + 0 + \dfrac{5}{2} \right)\hat{j} + \left( 1 + 1 + 3 \right)\hat{k} \right| \right)^{2}\]
On further simplification,
We get,
\[2 \mid \overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c} \mid^{2} = 2\left( \left| \left( \dfrac{- 2 + 4 – 3}{2} \right)\hat{\text{i\ }} + \left( \dfrac{2 + 5}{2} \right)\hat{j} + \left( 1 + 1 + 3 \right)\hat{k} \right| \right)^{2}\]
On solving,
We get,
\[2 \mid \overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c} \mid^{2} = 2\left( \left| \left( \dfrac{1}{2} \right)\hat{\text{i\ }} + \left( \dfrac{7}{2} \right)\hat{j} + \left( 5 \right)\hat{k} \right| \right)^{2}\ \]
On further solving,
\[2 \mid \overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c} \mid^{2} = 2\left( \dfrac{1}{4} + \dfrac{49}{4} + 25 \right)\]
On taking LCM,
We get,
\[2 \mid \overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c} \mid^{2} = 2\left( \dfrac{1 + 49 + 100}{4} \right)\]
On simplifying,
We get,
\[2 \mid \overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c} \mid^{2} = 2\left( \dfrac{150}{4} \right)\]
On further simplification,
We get,
\[2 \mid \overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c} \mid^{2} = 75\]
Thus the value of \[2 \mid \overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c} \mid^{2}\] is \[75\]
Answer :
The value of \[2 \mid \overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c} \mid^{2}\] is \[75\].
Note:In order to solve these types of questions, we should have a strong grip over vectors and coplanar vectors. Also, we should know about the product of vectors, there are two types of products in vectors. They are dot products and cross products. Two vectors’ dot product is a scalar that is located in the plane of the two vectors. A vector that is perpendicular to the plane in which these two vectors are located is the result of two vectors being cross-products.
Complete step by step Solution:
Given that \[\overrightarrow{c}\] is coplanar with \[\overrightarrow{a}\] and \[\overrightarrow{b}\] and \[\overrightarrow{b}\] is perpendicular to \[\overrightarrow{c}\]
That is,
\[\overrightarrow{c} = \lambda(\overrightarrow{b}(\overrightarrow{a} \times \overrightarrow{b})\]
\[\overrightarrow{c} = \lambda\left( \left( \overrightarrow{b}.\overrightarrow{b} \right)\overrightarrow{a} - \left( \overrightarrow{\text{b.}}\overrightarrow{a} \right)\overrightarrow{b} \right)\] •••• (1)
First, we can find \[\overrightarrow{b}.\overrightarrow{b}\]
Given that \[\overrightarrow{b} = 2\ \hat{i} + \hat{k}\]
Now
\[\overrightarrow{b}.\overrightarrow{b} = (2\ \hat{i} + \hat{k}).(\ 2\ \hat{i} + \hat{k})\]
On solving,
We get,
\[\overrightarrow{b}.\overrightarrow{b} = \left( 2 \times 2 \right) + \left( 1 \times 1 \right)\]
On simplifying,
We get,
\[\overrightarrow{b}.\overrightarrow{b} = 5\]
Similarly we need to find \[\overrightarrow{b}.\overrightarrow{a}\]
Given that \[\overrightarrow{a} = - \hat{i} + \hat{j} + \hat{k}\] and \[\overrightarrow{b} = 2\ \hat{i} + \hat{k}\]
Now,
\[\overrightarrow{b}.\overrightarrow{a} = \left( 2\ \hat{i} + \hat{k} \right).\left( - \hat{i} + \hat{j} + \hat{k} \right)\]
On simplifying,
We get,
\[\overrightarrow{b}.\overrightarrow{a} = \left( 2 \times – 1) – (0 \times 1 \right) + (1 \times 1)\]
On further simplification,
We get,
\[\overrightarrow{b}.\overrightarrow{a} = - 2 + 1 = - 1\]
Now on substituting the values of \[\overrightarrow{b}.\overrightarrow{b}\] and \[\overrightarrow{b}.\overrightarrow{a}\] in (1) ,
We get,
\[\overrightarrow{c} = \lambda\left( 5(\overrightarrow{a}) – ( - 1)(\overrightarrow{b}) \right)\]
On substituting the value of \[\overrightarrow{a}\] and \[\overrightarrow{b}\] ,
We get,
\[\overrightarrow{c} = \lambda\left( 5\left( - \hat{i} + \hat{j} + \hat{k} \right) + (2\ \hat{i} + \hat{k}) \right)\]
On solving,
We get,
\[\overrightarrow{c} = \lambda\left( \left( - 5\hat{i} + 5\hat{j} + 5\hat{k} \right) + (2\ \hat{i} + \hat{k}) \right)\]
Again on solving,
We get,
\[\overrightarrow{c} = \lambda\left( \left( - 3\hat{i} + 5\hat{j} + 6\hat{k} \right) \right)\] ••• (2)
Also given that \[\overrightarrow{a}.\overrightarrow{c} = 7\]
On substituting \[\overrightarrow{a}\] and \[\overrightarrow{c}\],
We get,
\[( - \hat{i} + \hat{j} + \hat{k}).\lambda\left( - 3\hat{i} + 5\hat{j} + 6\hat{k} \right) = 7\]
On simplifying,
We get,
\[( - 1 \times – 3\lambda) + (1 \times 5\lambda) + (1 \times 6\lambda) = 7\]
On further simplification,
We get,
\[3\lambda + 5\lambda + 6\lambda = 7\]
In adding all,
We get,
\[14\lambda = 7\]
On dividing both sides by \[14\] ,
We get,
\[\lambda = \dfrac{1}{2}\]
Now on substituting the value of \[\lambda\] in \[\overrightarrow{c} = \lambda\left( - 3\hat{i} + 5\hat{j} + 6\hat{k} \right)\]
We get,
\[\overrightarrow{c} = \dfrac{1}{2}\left( - 3\hat{i} + 5\hat{j} + 6\hat{k} \right)\ \]
We need to find the value of \[2 \mid \overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c} \mid^{2}\]
On substituting all the values,
We get,
\[2 \mid \overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c} \mid^{2} = 2\left( \left| \left( - \hat{i} + \hat{j} + \hat{k} \right) + \left( 2\hat{i} + \hat{k} \right) + \dfrac{1}{2}\left( - 3\hat{i} + 5\hat{j} + 6\hat{k} \right) \right| \right)^{2}\]
On simplifying,
We get,
\[2 \mid \overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c} \mid^{2} = 2\left( \left| \left( - 1 + 2 - \dfrac{3}{2} \right)\hat{i} + \left( 1 + 0 + \dfrac{5}{2} \right)\hat{j} + \left( 1 + 1 + 3 \right)\hat{k} \right| \right)^{2}\]
On further simplification,
We get,
\[2 \mid \overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c} \mid^{2} = 2\left( \left| \left( \dfrac{- 2 + 4 – 3}{2} \right)\hat{\text{i\ }} + \left( \dfrac{2 + 5}{2} \right)\hat{j} + \left( 1 + 1 + 3 \right)\hat{k} \right| \right)^{2}\]
On solving,
We get,
\[2 \mid \overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c} \mid^{2} = 2\left( \left| \left( \dfrac{1}{2} \right)\hat{\text{i\ }} + \left( \dfrac{7}{2} \right)\hat{j} + \left( 5 \right)\hat{k} \right| \right)^{2}\ \]
On further solving,
\[2 \mid \overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c} \mid^{2} = 2\left( \dfrac{1}{4} + \dfrac{49}{4} + 25 \right)\]
On taking LCM,
We get,
\[2 \mid \overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c} \mid^{2} = 2\left( \dfrac{1 + 49 + 100}{4} \right)\]
On simplifying,
We get,
\[2 \mid \overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c} \mid^{2} = 2\left( \dfrac{150}{4} \right)\]
On further simplification,
We get,
\[2 \mid \overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c} \mid^{2} = 75\]
Thus the value of \[2 \mid \overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c} \mid^{2}\] is \[75\]
Answer :
The value of \[2 \mid \overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c} \mid^{2}\] is \[75\].
Note:In order to solve these types of questions, we should have a strong grip over vectors and coplanar vectors. Also, we should know about the product of vectors, there are two types of products in vectors. They are dot products and cross products. Two vectors’ dot product is a scalar that is located in the plane of the two vectors. A vector that is perpendicular to the plane in which these two vectors are located is the result of two vectors being cross-products.
Recently Updated Pages
Area vs Volume: Key Differences Explained for Students

Mutually Exclusive vs Independent Events: Key Differences Explained

Addition of Three Vectors: Methods & Examples

Addition of Vectors: Simple Guide for Students

Algebra Made Easy: Step-by-Step Guide for Students

Relations and Functions: Complete Guide for Students

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

Understanding Collisions: Types and Examples for Students

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Understanding Atomic Structure for Beginners

Ideal and Non-Ideal Solutions Explained for Class 12 Chemistry

Degree of Dissociation: Meaning, Formula, Calculation & Uses

Understanding Electromagnetic Waves and Their Importance

Understanding the Electric Field of a Uniformly Charged Ring

