
Let three vectors \[\overrightarrow{a}\] , \[\overrightarrow{b}\] and \[\overrightarrow{c}\] be such that \[\overrightarrow{c}\] is coplanar with \[\overrightarrow{a}\] and \[\overrightarrow{b}\] , \[\overrightarrow{a}.\overrightarrow{c} = 7\] and \[\overrightarrow{b}\] is perpendicular to \[\overrightarrow{c}\] , where \[\overrightarrow{a} = - \hat{i} + \hat{j} + \hat{k}\] and \[\overrightarrow{b} = 2\ \hat{i} + \hat{k}\] . Then the value of \[2 \mid \overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c} \mid^{2}\] is
Answer
162.9k+ views
Hint: In this question, we need to find the value of \[2 \mid \overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c} \mid^{2}\] . First we need to use the given conditions \[\overrightarrow{c}\] is coplanar with \[\overrightarrow{a}\] and \[\overrightarrow{b}\] and \[\overrightarrow{b}\] is perpendicular to \[\overrightarrow{c}\] . Next we need to find the value of \[\overrightarrow{c}\] with the help of \[\overrightarrow{a}\] and \[\overrightarrow{b}\] . Then substituting the values of \[\overrightarrow{a}\] , \[\overrightarrow{b}\ \] and \[\overrightarrow{c}\] . We can find the value of \[2 \mid \overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c} \mid^{2}\]
Complete step by step Solution:
Given that \[\overrightarrow{c}\] is coplanar with \[\overrightarrow{a}\] and \[\overrightarrow{b}\] and \[\overrightarrow{b}\] is perpendicular to \[\overrightarrow{c}\]
That is,
\[\overrightarrow{c} = \lambda(\overrightarrow{b}(\overrightarrow{a} \times \overrightarrow{b})\]
\[\overrightarrow{c} = \lambda\left( \left( \overrightarrow{b}.\overrightarrow{b} \right)\overrightarrow{a} - \left( \overrightarrow{\text{b.}}\overrightarrow{a} \right)\overrightarrow{b} \right)\] •••• (1)
First, we can find \[\overrightarrow{b}.\overrightarrow{b}\]
Given that \[\overrightarrow{b} = 2\ \hat{i} + \hat{k}\]
Now
\[\overrightarrow{b}.\overrightarrow{b} = (2\ \hat{i} + \hat{k}).(\ 2\ \hat{i} + \hat{k})\]
On solving,
We get,
\[\overrightarrow{b}.\overrightarrow{b} = \left( 2 \times 2 \right) + \left( 1 \times 1 \right)\]
On simplifying,
We get,
\[\overrightarrow{b}.\overrightarrow{b} = 5\]
Similarly we need to find \[\overrightarrow{b}.\overrightarrow{a}\]
Given that \[\overrightarrow{a} = - \hat{i} + \hat{j} + \hat{k}\] and \[\overrightarrow{b} = 2\ \hat{i} + \hat{k}\]
Now,
\[\overrightarrow{b}.\overrightarrow{a} = \left( 2\ \hat{i} + \hat{k} \right).\left( - \hat{i} + \hat{j} + \hat{k} \right)\]
On simplifying,
We get,
\[\overrightarrow{b}.\overrightarrow{a} = \left( 2 \times – 1) – (0 \times 1 \right) + (1 \times 1)\]
On further simplification,
We get,
\[\overrightarrow{b}.\overrightarrow{a} = - 2 + 1 = - 1\]
Now on substituting the values of \[\overrightarrow{b}.\overrightarrow{b}\] and \[\overrightarrow{b}.\overrightarrow{a}\] in (1) ,
We get,
\[\overrightarrow{c} = \lambda\left( 5(\overrightarrow{a}) – ( - 1)(\overrightarrow{b}) \right)\]
On substituting the value of \[\overrightarrow{a}\] and \[\overrightarrow{b}\] ,
We get,
\[\overrightarrow{c} = \lambda\left( 5\left( - \hat{i} + \hat{j} + \hat{k} \right) + (2\ \hat{i} + \hat{k}) \right)\]
On solving,
We get,
\[\overrightarrow{c} = \lambda\left( \left( - 5\hat{i} + 5\hat{j} + 5\hat{k} \right) + (2\ \hat{i} + \hat{k}) \right)\]
Again on solving,
We get,
\[\overrightarrow{c} = \lambda\left( \left( - 3\hat{i} + 5\hat{j} + 6\hat{k} \right) \right)\] ••• (2)
Also given that \[\overrightarrow{a}.\overrightarrow{c} = 7\]
On substituting \[\overrightarrow{a}\] and \[\overrightarrow{c}\],
We get,
\[( - \hat{i} + \hat{j} + \hat{k}).\lambda\left( - 3\hat{i} + 5\hat{j} + 6\hat{k} \right) = 7\]
On simplifying,
We get,
\[( - 1 \times – 3\lambda) + (1 \times 5\lambda) + (1 \times 6\lambda) = 7\]
On further simplification,
We get,
\[3\lambda + 5\lambda + 6\lambda = 7\]
In adding all,
We get,
\[14\lambda = 7\]
On dividing both sides by \[14\] ,
We get,
\[\lambda = \dfrac{1}{2}\]
Now on substituting the value of \[\lambda\] in \[\overrightarrow{c} = \lambda\left( - 3\hat{i} + 5\hat{j} + 6\hat{k} \right)\]
We get,
\[\overrightarrow{c} = \dfrac{1}{2}\left( - 3\hat{i} + 5\hat{j} + 6\hat{k} \right)\ \]
We need to find the value of \[2 \mid \overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c} \mid^{2}\]
On substituting all the values,
We get,
\[2 \mid \overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c} \mid^{2} = 2\left( \left| \left( - \hat{i} + \hat{j} + \hat{k} \right) + \left( 2\hat{i} + \hat{k} \right) + \dfrac{1}{2}\left( - 3\hat{i} + 5\hat{j} + 6\hat{k} \right) \right| \right)^{2}\]
On simplifying,
We get,
\[2 \mid \overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c} \mid^{2} = 2\left( \left| \left( - 1 + 2 - \dfrac{3}{2} \right)\hat{i} + \left( 1 + 0 + \dfrac{5}{2} \right)\hat{j} + \left( 1 + 1 + 3 \right)\hat{k} \right| \right)^{2}\]
On further simplification,
We get,
\[2 \mid \overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c} \mid^{2} = 2\left( \left| \left( \dfrac{- 2 + 4 – 3}{2} \right)\hat{\text{i\ }} + \left( \dfrac{2 + 5}{2} \right)\hat{j} + \left( 1 + 1 + 3 \right)\hat{k} \right| \right)^{2}\]
On solving,
We get,
\[2 \mid \overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c} \mid^{2} = 2\left( \left| \left( \dfrac{1}{2} \right)\hat{\text{i\ }} + \left( \dfrac{7}{2} \right)\hat{j} + \left( 5 \right)\hat{k} \right| \right)^{2}\ \]
On further solving,
\[2 \mid \overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c} \mid^{2} = 2\left( \dfrac{1}{4} + \dfrac{49}{4} + 25 \right)\]
On taking LCM,
We get,
\[2 \mid \overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c} \mid^{2} = 2\left( \dfrac{1 + 49 + 100}{4} \right)\]
On simplifying,
We get,
\[2 \mid \overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c} \mid^{2} = 2\left( \dfrac{150}{4} \right)\]
On further simplification,
We get,
\[2 \mid \overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c} \mid^{2} = 75\]
Thus the value of \[2 \mid \overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c} \mid^{2}\] is \[75\]
Answer :
The value of \[2 \mid \overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c} \mid^{2}\] is \[75\].
Note:In order to solve these types of questions, we should have a strong grip over vectors and coplanar vectors. Also, we should know about the product of vectors, there are two types of products in vectors. They are dot products and cross products. Two vectors’ dot product is a scalar that is located in the plane of the two vectors. A vector that is perpendicular to the plane in which these two vectors are located is the result of two vectors being cross-products.
Complete step by step Solution:
Given that \[\overrightarrow{c}\] is coplanar with \[\overrightarrow{a}\] and \[\overrightarrow{b}\] and \[\overrightarrow{b}\] is perpendicular to \[\overrightarrow{c}\]
That is,
\[\overrightarrow{c} = \lambda(\overrightarrow{b}(\overrightarrow{a} \times \overrightarrow{b})\]
\[\overrightarrow{c} = \lambda\left( \left( \overrightarrow{b}.\overrightarrow{b} \right)\overrightarrow{a} - \left( \overrightarrow{\text{b.}}\overrightarrow{a} \right)\overrightarrow{b} \right)\] •••• (1)
First, we can find \[\overrightarrow{b}.\overrightarrow{b}\]
Given that \[\overrightarrow{b} = 2\ \hat{i} + \hat{k}\]
Now
\[\overrightarrow{b}.\overrightarrow{b} = (2\ \hat{i} + \hat{k}).(\ 2\ \hat{i} + \hat{k})\]
On solving,
We get,
\[\overrightarrow{b}.\overrightarrow{b} = \left( 2 \times 2 \right) + \left( 1 \times 1 \right)\]
On simplifying,
We get,
\[\overrightarrow{b}.\overrightarrow{b} = 5\]
Similarly we need to find \[\overrightarrow{b}.\overrightarrow{a}\]
Given that \[\overrightarrow{a} = - \hat{i} + \hat{j} + \hat{k}\] and \[\overrightarrow{b} = 2\ \hat{i} + \hat{k}\]
Now,
\[\overrightarrow{b}.\overrightarrow{a} = \left( 2\ \hat{i} + \hat{k} \right).\left( - \hat{i} + \hat{j} + \hat{k} \right)\]
On simplifying,
We get,
\[\overrightarrow{b}.\overrightarrow{a} = \left( 2 \times – 1) – (0 \times 1 \right) + (1 \times 1)\]
On further simplification,
We get,
\[\overrightarrow{b}.\overrightarrow{a} = - 2 + 1 = - 1\]
Now on substituting the values of \[\overrightarrow{b}.\overrightarrow{b}\] and \[\overrightarrow{b}.\overrightarrow{a}\] in (1) ,
We get,
\[\overrightarrow{c} = \lambda\left( 5(\overrightarrow{a}) – ( - 1)(\overrightarrow{b}) \right)\]
On substituting the value of \[\overrightarrow{a}\] and \[\overrightarrow{b}\] ,
We get,
\[\overrightarrow{c} = \lambda\left( 5\left( - \hat{i} + \hat{j} + \hat{k} \right) + (2\ \hat{i} + \hat{k}) \right)\]
On solving,
We get,
\[\overrightarrow{c} = \lambda\left( \left( - 5\hat{i} + 5\hat{j} + 5\hat{k} \right) + (2\ \hat{i} + \hat{k}) \right)\]
Again on solving,
We get,
\[\overrightarrow{c} = \lambda\left( \left( - 3\hat{i} + 5\hat{j} + 6\hat{k} \right) \right)\] ••• (2)
Also given that \[\overrightarrow{a}.\overrightarrow{c} = 7\]
On substituting \[\overrightarrow{a}\] and \[\overrightarrow{c}\],
We get,
\[( - \hat{i} + \hat{j} + \hat{k}).\lambda\left( - 3\hat{i} + 5\hat{j} + 6\hat{k} \right) = 7\]
On simplifying,
We get,
\[( - 1 \times – 3\lambda) + (1 \times 5\lambda) + (1 \times 6\lambda) = 7\]
On further simplification,
We get,
\[3\lambda + 5\lambda + 6\lambda = 7\]
In adding all,
We get,
\[14\lambda = 7\]
On dividing both sides by \[14\] ,
We get,
\[\lambda = \dfrac{1}{2}\]
Now on substituting the value of \[\lambda\] in \[\overrightarrow{c} = \lambda\left( - 3\hat{i} + 5\hat{j} + 6\hat{k} \right)\]
We get,
\[\overrightarrow{c} = \dfrac{1}{2}\left( - 3\hat{i} + 5\hat{j} + 6\hat{k} \right)\ \]
We need to find the value of \[2 \mid \overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c} \mid^{2}\]
On substituting all the values,
We get,
\[2 \mid \overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c} \mid^{2} = 2\left( \left| \left( - \hat{i} + \hat{j} + \hat{k} \right) + \left( 2\hat{i} + \hat{k} \right) + \dfrac{1}{2}\left( - 3\hat{i} + 5\hat{j} + 6\hat{k} \right) \right| \right)^{2}\]
On simplifying,
We get,
\[2 \mid \overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c} \mid^{2} = 2\left( \left| \left( - 1 + 2 - \dfrac{3}{2} \right)\hat{i} + \left( 1 + 0 + \dfrac{5}{2} \right)\hat{j} + \left( 1 + 1 + 3 \right)\hat{k} \right| \right)^{2}\]
On further simplification,
We get,
\[2 \mid \overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c} \mid^{2} = 2\left( \left| \left( \dfrac{- 2 + 4 – 3}{2} \right)\hat{\text{i\ }} + \left( \dfrac{2 + 5}{2} \right)\hat{j} + \left( 1 + 1 + 3 \right)\hat{k} \right| \right)^{2}\]
On solving,
We get,
\[2 \mid \overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c} \mid^{2} = 2\left( \left| \left( \dfrac{1}{2} \right)\hat{\text{i\ }} + \left( \dfrac{7}{2} \right)\hat{j} + \left( 5 \right)\hat{k} \right| \right)^{2}\ \]
On further solving,
\[2 \mid \overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c} \mid^{2} = 2\left( \dfrac{1}{4} + \dfrac{49}{4} + 25 \right)\]
On taking LCM,
We get,
\[2 \mid \overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c} \mid^{2} = 2\left( \dfrac{1 + 49 + 100}{4} \right)\]
On simplifying,
We get,
\[2 \mid \overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c} \mid^{2} = 2\left( \dfrac{150}{4} \right)\]
On further simplification,
We get,
\[2 \mid \overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c} \mid^{2} = 75\]
Thus the value of \[2 \mid \overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c} \mid^{2}\] is \[75\]
Answer :
The value of \[2 \mid \overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c} \mid^{2}\] is \[75\].
Note:In order to solve these types of questions, we should have a strong grip over vectors and coplanar vectors. Also, we should know about the product of vectors, there are two types of products in vectors. They are dot products and cross products. Two vectors’ dot product is a scalar that is located in the plane of the two vectors. A vector that is perpendicular to the plane in which these two vectors are located is the result of two vectors being cross-products.
Recently Updated Pages
If tan 1y tan 1x + tan 1left frac2x1 x2 right where x frac1sqrt 3 Then the value of y is

Geometry of Complex Numbers – Topics, Reception, Audience and Related Readings

JEE Main 2021 July 25 Shift 1 Question Paper with Answer Key

JEE Main 2021 July 22 Shift 2 Question Paper with Answer Key

JEE Electricity and Magnetism Important Concepts and Tips for Exam Preparation

JEE Energetics Important Concepts and Tips for Exam Preparation

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Displacement-Time Graph and Velocity-Time Graph for JEE

Degree of Dissociation and Its Formula With Solved Example for JEE

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

JoSAA JEE Main & Advanced 2025 Counselling: Registration Dates, Documents, Fees, Seat Allotment & Cut‑offs

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

JEE Advanced 2025: Dates, Registration, Syllabus, Eligibility Criteria and More

Verb Forms Guide: V1, V2, V3, V4, V5 Explained

1 Billion in Rupees

Which one is a true fish A Jellyfish B Starfish C Dogfish class 11 biology CBSE
