
Let three vectors \[\overrightarrow{a}\] , \[\overrightarrow{b}\] and \[\overrightarrow{c}\] be such that \[\overrightarrow{c}\] is coplanar with \[\overrightarrow{a}\] and \[\overrightarrow{b}\] , \[\overrightarrow{a}.\overrightarrow{c} = 7\] and \[\overrightarrow{b}\] is perpendicular to \[\overrightarrow{c}\] , where \[\overrightarrow{a} = - \hat{i} + \hat{j} + \hat{k}\] and \[\overrightarrow{b} = 2\ \hat{i} + \hat{k}\] . Then the value of \[2 \mid \overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c} \mid^{2}\] is
Answer
218.7k+ views
Hint: In this question, we need to find the value of \[2 \mid \overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c} \mid^{2}\] . First we need to use the given conditions \[\overrightarrow{c}\] is coplanar with \[\overrightarrow{a}\] and \[\overrightarrow{b}\] and \[\overrightarrow{b}\] is perpendicular to \[\overrightarrow{c}\] . Next we need to find the value of \[\overrightarrow{c}\] with the help of \[\overrightarrow{a}\] and \[\overrightarrow{b}\] . Then substituting the values of \[\overrightarrow{a}\] , \[\overrightarrow{b}\ \] and \[\overrightarrow{c}\] . We can find the value of \[2 \mid \overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c} \mid^{2}\]
Complete step by step Solution:
Given that \[\overrightarrow{c}\] is coplanar with \[\overrightarrow{a}\] and \[\overrightarrow{b}\] and \[\overrightarrow{b}\] is perpendicular to \[\overrightarrow{c}\]
That is,
\[\overrightarrow{c} = \lambda(\overrightarrow{b}(\overrightarrow{a} \times \overrightarrow{b})\]
\[\overrightarrow{c} = \lambda\left( \left( \overrightarrow{b}.\overrightarrow{b} \right)\overrightarrow{a} - \left( \overrightarrow{\text{b.}}\overrightarrow{a} \right)\overrightarrow{b} \right)\] •••• (1)
First, we can find \[\overrightarrow{b}.\overrightarrow{b}\]
Given that \[\overrightarrow{b} = 2\ \hat{i} + \hat{k}\]
Now
\[\overrightarrow{b}.\overrightarrow{b} = (2\ \hat{i} + \hat{k}).(\ 2\ \hat{i} + \hat{k})\]
On solving,
We get,
\[\overrightarrow{b}.\overrightarrow{b} = \left( 2 \times 2 \right) + \left( 1 \times 1 \right)\]
On simplifying,
We get,
\[\overrightarrow{b}.\overrightarrow{b} = 5\]
Similarly we need to find \[\overrightarrow{b}.\overrightarrow{a}\]
Given that \[\overrightarrow{a} = - \hat{i} + \hat{j} + \hat{k}\] and \[\overrightarrow{b} = 2\ \hat{i} + \hat{k}\]
Now,
\[\overrightarrow{b}.\overrightarrow{a} = \left( 2\ \hat{i} + \hat{k} \right).\left( - \hat{i} + \hat{j} + \hat{k} \right)\]
On simplifying,
We get,
\[\overrightarrow{b}.\overrightarrow{a} = \left( 2 \times – 1) – (0 \times 1 \right) + (1 \times 1)\]
On further simplification,
We get,
\[\overrightarrow{b}.\overrightarrow{a} = - 2 + 1 = - 1\]
Now on substituting the values of \[\overrightarrow{b}.\overrightarrow{b}\] and \[\overrightarrow{b}.\overrightarrow{a}\] in (1) ,
We get,
\[\overrightarrow{c} = \lambda\left( 5(\overrightarrow{a}) – ( - 1)(\overrightarrow{b}) \right)\]
On substituting the value of \[\overrightarrow{a}\] and \[\overrightarrow{b}\] ,
We get,
\[\overrightarrow{c} = \lambda\left( 5\left( - \hat{i} + \hat{j} + \hat{k} \right) + (2\ \hat{i} + \hat{k}) \right)\]
On solving,
We get,
\[\overrightarrow{c} = \lambda\left( \left( - 5\hat{i} + 5\hat{j} + 5\hat{k} \right) + (2\ \hat{i} + \hat{k}) \right)\]
Again on solving,
We get,
\[\overrightarrow{c} = \lambda\left( \left( - 3\hat{i} + 5\hat{j} + 6\hat{k} \right) \right)\] ••• (2)
Also given that \[\overrightarrow{a}.\overrightarrow{c} = 7\]
On substituting \[\overrightarrow{a}\] and \[\overrightarrow{c}\],
We get,
\[( - \hat{i} + \hat{j} + \hat{k}).\lambda\left( - 3\hat{i} + 5\hat{j} + 6\hat{k} \right) = 7\]
On simplifying,
We get,
\[( - 1 \times – 3\lambda) + (1 \times 5\lambda) + (1 \times 6\lambda) = 7\]
On further simplification,
We get,
\[3\lambda + 5\lambda + 6\lambda = 7\]
In adding all,
We get,
\[14\lambda = 7\]
On dividing both sides by \[14\] ,
We get,
\[\lambda = \dfrac{1}{2}\]
Now on substituting the value of \[\lambda\] in \[\overrightarrow{c} = \lambda\left( - 3\hat{i} + 5\hat{j} + 6\hat{k} \right)\]
We get,
\[\overrightarrow{c} = \dfrac{1}{2}\left( - 3\hat{i} + 5\hat{j} + 6\hat{k} \right)\ \]
We need to find the value of \[2 \mid \overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c} \mid^{2}\]
On substituting all the values,
We get,
\[2 \mid \overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c} \mid^{2} = 2\left( \left| \left( - \hat{i} + \hat{j} + \hat{k} \right) + \left( 2\hat{i} + \hat{k} \right) + \dfrac{1}{2}\left( - 3\hat{i} + 5\hat{j} + 6\hat{k} \right) \right| \right)^{2}\]
On simplifying,
We get,
\[2 \mid \overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c} \mid^{2} = 2\left( \left| \left( - 1 + 2 - \dfrac{3}{2} \right)\hat{i} + \left( 1 + 0 + \dfrac{5}{2} \right)\hat{j} + \left( 1 + 1 + 3 \right)\hat{k} \right| \right)^{2}\]
On further simplification,
We get,
\[2 \mid \overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c} \mid^{2} = 2\left( \left| \left( \dfrac{- 2 + 4 – 3}{2} \right)\hat{\text{i\ }} + \left( \dfrac{2 + 5}{2} \right)\hat{j} + \left( 1 + 1 + 3 \right)\hat{k} \right| \right)^{2}\]
On solving,
We get,
\[2 \mid \overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c} \mid^{2} = 2\left( \left| \left( \dfrac{1}{2} \right)\hat{\text{i\ }} + \left( \dfrac{7}{2} \right)\hat{j} + \left( 5 \right)\hat{k} \right| \right)^{2}\ \]
On further solving,
\[2 \mid \overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c} \mid^{2} = 2\left( \dfrac{1}{4} + \dfrac{49}{4} + 25 \right)\]
On taking LCM,
We get,
\[2 \mid \overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c} \mid^{2} = 2\left( \dfrac{1 + 49 + 100}{4} \right)\]
On simplifying,
We get,
\[2 \mid \overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c} \mid^{2} = 2\left( \dfrac{150}{4} \right)\]
On further simplification,
We get,
\[2 \mid \overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c} \mid^{2} = 75\]
Thus the value of \[2 \mid \overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c} \mid^{2}\] is \[75\]
Answer :
The value of \[2 \mid \overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c} \mid^{2}\] is \[75\].
Note:In order to solve these types of questions, we should have a strong grip over vectors and coplanar vectors. Also, we should know about the product of vectors, there are two types of products in vectors. They are dot products and cross products. Two vectors’ dot product is a scalar that is located in the plane of the two vectors. A vector that is perpendicular to the plane in which these two vectors are located is the result of two vectors being cross-products.
Complete step by step Solution:
Given that \[\overrightarrow{c}\] is coplanar with \[\overrightarrow{a}\] and \[\overrightarrow{b}\] and \[\overrightarrow{b}\] is perpendicular to \[\overrightarrow{c}\]
That is,
\[\overrightarrow{c} = \lambda(\overrightarrow{b}(\overrightarrow{a} \times \overrightarrow{b})\]
\[\overrightarrow{c} = \lambda\left( \left( \overrightarrow{b}.\overrightarrow{b} \right)\overrightarrow{a} - \left( \overrightarrow{\text{b.}}\overrightarrow{a} \right)\overrightarrow{b} \right)\] •••• (1)
First, we can find \[\overrightarrow{b}.\overrightarrow{b}\]
Given that \[\overrightarrow{b} = 2\ \hat{i} + \hat{k}\]
Now
\[\overrightarrow{b}.\overrightarrow{b} = (2\ \hat{i} + \hat{k}).(\ 2\ \hat{i} + \hat{k})\]
On solving,
We get,
\[\overrightarrow{b}.\overrightarrow{b} = \left( 2 \times 2 \right) + \left( 1 \times 1 \right)\]
On simplifying,
We get,
\[\overrightarrow{b}.\overrightarrow{b} = 5\]
Similarly we need to find \[\overrightarrow{b}.\overrightarrow{a}\]
Given that \[\overrightarrow{a} = - \hat{i} + \hat{j} + \hat{k}\] and \[\overrightarrow{b} = 2\ \hat{i} + \hat{k}\]
Now,
\[\overrightarrow{b}.\overrightarrow{a} = \left( 2\ \hat{i} + \hat{k} \right).\left( - \hat{i} + \hat{j} + \hat{k} \right)\]
On simplifying,
We get,
\[\overrightarrow{b}.\overrightarrow{a} = \left( 2 \times – 1) – (0 \times 1 \right) + (1 \times 1)\]
On further simplification,
We get,
\[\overrightarrow{b}.\overrightarrow{a} = - 2 + 1 = - 1\]
Now on substituting the values of \[\overrightarrow{b}.\overrightarrow{b}\] and \[\overrightarrow{b}.\overrightarrow{a}\] in (1) ,
We get,
\[\overrightarrow{c} = \lambda\left( 5(\overrightarrow{a}) – ( - 1)(\overrightarrow{b}) \right)\]
On substituting the value of \[\overrightarrow{a}\] and \[\overrightarrow{b}\] ,
We get,
\[\overrightarrow{c} = \lambda\left( 5\left( - \hat{i} + \hat{j} + \hat{k} \right) + (2\ \hat{i} + \hat{k}) \right)\]
On solving,
We get,
\[\overrightarrow{c} = \lambda\left( \left( - 5\hat{i} + 5\hat{j} + 5\hat{k} \right) + (2\ \hat{i} + \hat{k}) \right)\]
Again on solving,
We get,
\[\overrightarrow{c} = \lambda\left( \left( - 3\hat{i} + 5\hat{j} + 6\hat{k} \right) \right)\] ••• (2)
Also given that \[\overrightarrow{a}.\overrightarrow{c} = 7\]
On substituting \[\overrightarrow{a}\] and \[\overrightarrow{c}\],
We get,
\[( - \hat{i} + \hat{j} + \hat{k}).\lambda\left( - 3\hat{i} + 5\hat{j} + 6\hat{k} \right) = 7\]
On simplifying,
We get,
\[( - 1 \times – 3\lambda) + (1 \times 5\lambda) + (1 \times 6\lambda) = 7\]
On further simplification,
We get,
\[3\lambda + 5\lambda + 6\lambda = 7\]
In adding all,
We get,
\[14\lambda = 7\]
On dividing both sides by \[14\] ,
We get,
\[\lambda = \dfrac{1}{2}\]
Now on substituting the value of \[\lambda\] in \[\overrightarrow{c} = \lambda\left( - 3\hat{i} + 5\hat{j} + 6\hat{k} \right)\]
We get,
\[\overrightarrow{c} = \dfrac{1}{2}\left( - 3\hat{i} + 5\hat{j} + 6\hat{k} \right)\ \]
We need to find the value of \[2 \mid \overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c} \mid^{2}\]
On substituting all the values,
We get,
\[2 \mid \overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c} \mid^{2} = 2\left( \left| \left( - \hat{i} + \hat{j} + \hat{k} \right) + \left( 2\hat{i} + \hat{k} \right) + \dfrac{1}{2}\left( - 3\hat{i} + 5\hat{j} + 6\hat{k} \right) \right| \right)^{2}\]
On simplifying,
We get,
\[2 \mid \overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c} \mid^{2} = 2\left( \left| \left( - 1 + 2 - \dfrac{3}{2} \right)\hat{i} + \left( 1 + 0 + \dfrac{5}{2} \right)\hat{j} + \left( 1 + 1 + 3 \right)\hat{k} \right| \right)^{2}\]
On further simplification,
We get,
\[2 \mid \overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c} \mid^{2} = 2\left( \left| \left( \dfrac{- 2 + 4 – 3}{2} \right)\hat{\text{i\ }} + \left( \dfrac{2 + 5}{2} \right)\hat{j} + \left( 1 + 1 + 3 \right)\hat{k} \right| \right)^{2}\]
On solving,
We get,
\[2 \mid \overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c} \mid^{2} = 2\left( \left| \left( \dfrac{1}{2} \right)\hat{\text{i\ }} + \left( \dfrac{7}{2} \right)\hat{j} + \left( 5 \right)\hat{k} \right| \right)^{2}\ \]
On further solving,
\[2 \mid \overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c} \mid^{2} = 2\left( \dfrac{1}{4} + \dfrac{49}{4} + 25 \right)\]
On taking LCM,
We get,
\[2 \mid \overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c} \mid^{2} = 2\left( \dfrac{1 + 49 + 100}{4} \right)\]
On simplifying,
We get,
\[2 \mid \overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c} \mid^{2} = 2\left( \dfrac{150}{4} \right)\]
On further simplification,
We get,
\[2 \mid \overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c} \mid^{2} = 75\]
Thus the value of \[2 \mid \overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c} \mid^{2}\] is \[75\]
Answer :
The value of \[2 \mid \overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c} \mid^{2}\] is \[75\].
Note:In order to solve these types of questions, we should have a strong grip over vectors and coplanar vectors. Also, we should know about the product of vectors, there are two types of products in vectors. They are dot products and cross products. Two vectors’ dot product is a scalar that is located in the plane of the two vectors. A vector that is perpendicular to the plane in which these two vectors are located is the result of two vectors being cross-products.
Recently Updated Pages
In a game two players A and B take turns in throwing class 12 maths JEE_Main

The number of ways in which 6 men and 5 women can dine class 12 maths JEE_Main

The area of an expanding rectangle is increasing at class 12 maths JEE_Main

If y xxx cdots infty then find dfracdydx A yxy 1 B class 12 maths JEE_Main

Chemical Properties of Hydrogen - Important Concepts for JEE Exam Preparation

JEE General Topics in Chemistry Important Concepts and Tips

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

Understanding Collisions: Types and Examples for Students

Understanding Atomic Structure for Beginners

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

How to Convert a Galvanometer into an Ammeter or Voltmeter

Understanding Centrifugal Force in Physics

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Degree of Dissociation: Meaning, Formula, Calculation & Uses

Understanding Electromagnetic Waves and Their Importance

